CONTINUOUS-SELECTIONS OF LINEAR FUNCTIONS AND NONSMOOTH CRITICAL-POINT THEORY

被引:35
作者
BARTELS, SG
KUNTZ, L
SCHOLTES, S
机构
[1] Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Karlsruhe
关键词
CONTINUOUS SELECTION; CRITICAL POINT; PIECEWISE LINEAR FUNCTION; MAX-MIN REPRESENTATION; TOPOLOGICAL CLASSIFICATION; NONSMOOTH OPTIMIZATION; MORSE THEORY;
D O I
10.1016/0362-546X(95)91645-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:385 / 407
页数:23
相关论文
共 15 条
[1]   FIXED-POINT THEOREMS AND MORSE LEMMA FOR LIPSCHITZIAN FUNCTIONS [J].
BONNISSEAU, JM ;
CORNET, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 146 (02) :318-332
[2]   MORSE-THEORY FOR SOME LOWER-C2 FUNCTIONS IN FINITE DIMENSION [J].
BOUGEARD, ML .
MATHEMATICAL PROGRAMMING, 1988, 41 (02) :141-159
[3]  
CHRISTENSON CO, 1977, ASPECTS TOPOLOGY
[4]  
CLARKE FH, 1990, SIAM CLASSICS APPLIE
[5]  
GRATZER G, 1981, LATTICE THEORY
[6]   LIPSCHITZ CONTINUITY FOR CONSTRAINED PROCESSES [J].
HAGER, WW .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1979, 17 (03) :321-338
[7]  
Jongen H. Th., 1988, Optimization, V19, P343, DOI 10.1080/02331938808843350
[8]  
JONGEN HT, 1983, NONLINEAR OPTIMIZATI, V1
[9]  
JONGEN HT, 1986, NONLINEAR OPTIMIZATI, V2
[10]   A GENERALIZED CANONICAL PIECEWISE-LINEAR REPRESENTATION [J].
KAHLERT, C ;
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1990, 37 (03) :373-383