EXACT PROPAGATORS FOR TIME-DEPENDENT COULOMB, DELTA AND OTHER POTENTIALS

被引:49
作者
DODONOV, VV
MANKO, VI
NIKONOV, DE
机构
[1] Lebedev Physics Institute, 117924 Moscow
关键词
D O I
10.1016/0375-9601(92)90054-P
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new formula relating the propagators of the Schrodinger equation with certain time-dependent potentials to the propagator of the same equation with time-independent potentials is derived on the basis of the integral of motion found by Berry and Klein. The examples considered include the non-stationary harmonic oscillator, the singular oscillator, the Coulomb potential, the delta potential and the particle in a box problem.
引用
收藏
页码:359 / 364
页数:6
相关论文
共 45 条
[1]  
Albeverio S., 2005, SOLVABLE MODELS QUAN, V2nd ed.
[2]   PATH INTEGRAL TREATMENT OF THE HYDROGEN-ATOM IN A CURVED SPACE OF CONSTANT CURVATURE .2. HYPERBOLIC SPACE [J].
BARUT, AO ;
INOMATA, A ;
JUNKER, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (07) :1179-1190
[3]   PATH INTEGRAL QUANTIZATION OF THE MAGNETIC TOP [J].
BARUT, AO ;
DURU, IH .
PHYSICS LETTERS A, 1991, 158 (09) :441-444
[4]  
BERRY MV, 1984, J PHYS A-MATH GEN, V17, P1805, DOI 10.1088/0305-4470/17/9/016
[5]   GREENS-FUNCTION AND PROPAGATOR FOR THE ONE-DIMENSIONAL DELTA-FUNCTION POTENTIAL [J].
BLINDER, SM .
PHYSICAL REVIEW A, 1988, 37 (03) :973-976
[6]   ANALYTIC FORM FOR THE NONRELATIVISTIC COULOMB PROPAGATOR [J].
BLINDER, SM .
PHYSICAL REVIEW A, 1991, 43 (01) :13-16
[7]  
Boas J., 1955, SCIENCE, V122, P290
[8]  
BOHM M, 1987, J MATH PHYS, V28, P1978, DOI 10.1063/1.527460
[9]   THE 2-DIMENSIONAL HARMONIC-OSCILLATOR INTERACTING WITH A WEDGE [J].
CHENG, BK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (24) :5807-5814
[10]   CORRELATION-FUNCTIONS OF THE NONSTATIONARY QUANTUM SINGULAR OSCILLATOR [J].
CHUMAKOV, SM ;
DODONOV, VV ;
MANKO, VI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (16) :3229-3239