OPTIMAL VARIATIONAL APPROXIMATIONS TO RENORMALIZATION-GROUPS .2. DETERMINATION OF OPTIMAL PARAMETERS

被引:1
作者
BARBER, MN
机构
关键词
D O I
10.1016/0021-9991(80)90098-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:414 / 434
页数:21
相关论文
共 31 条
[21]   KADANOFFS APPROXIMATE RENORMALIZATION GROUP TRANSFORMATION [J].
KNOPS, HJF .
PHYSICA A, 1977, 86 (02) :448-456
[22]   RENORMALIZATION-GROUP APPROACH TO SOLUTION OF GENERAL ISING MODELS [J].
NAUENBERG, M ;
NIENHUIS, B .
PHYSICAL REVIEW LETTERS, 1974, 33 (27) :1598-1601
[23]  
NIEMEIJER T, 1976, PHASE TRANSITIONS CR, P425
[24]   Crystal statistics I A two-dimensional model with an order-disorder transition [J].
Onsager, L .
PHYSICAL REVIEW, 1944, 65 (3/4) :117-149
[25]  
Pfeuty P., 1977, INTRO RENORMALIZATIO
[26]   DIRECTIONAL DERIVATIVE METHODS FOR SOLVING OPTIMAL PARAMETER SELECTION PROBLEMS [J].
TEO, KL ;
MOORE, EJ .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1978, 9 (09) :1029-1041
[27]   VARIATIONAL PRINCIPLES IN RENORMALIZATION THEORY [J].
VANSAARLOOS, W ;
VANLEEUWEN, JMJ ;
PRUISKEN, AMM .
PHYSICA A, 1978, 92 (3-4) :323-342
[28]   RENORMALIZATION GROUP APPROACH TO SCALING IN PHYSICS [J].
WALLACE, DJ ;
ZIA, RKP .
REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (01) :1-85
[29]  
Wilson K.G., 1974, PHYS REPT, V12, P75, DOI DOI 10.1016/0370-1573(74)90023-4
[30]   APPROXIMATE RENORMALIZATION GROUP CALCULATION OF CUBIC CROSSOVER [J].
YALABIK, MC ;
HOUGHTON, A .
PHYSICS LETTERS A, 1977, 61 (01) :1-2