FORECASTING A CHAOTIC TIME-SERIES USING AN IMPROVED METRIC FOR EMBEDDING SPACE

被引:28
作者
MURRAY, DB
机构
[1] Department of Physics, Okanagan University College, Kelowna
来源
PHYSICA D | 1993年 / 68卷 / 3-4期
关键词
D O I
10.1016/0167-2789(93)90127-M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method is presented for improving the accuracy of forecasts of future values of a time series of one variable of a chaotic dynamical system. The metric for the embedding space of time-delay vectors of time series values is obtained from a metric tensor whose components are varied to minimize root mean squared error of forecasts. The improvement of forecasts is demonstrated for time series of the Henon and Ikeda maps, the Lorenz system of coupled differential equations and the Mackey-Glass delay differential equation.
引用
收藏
页码:318 / 325
页数:8
相关论文
共 27 条
  • [21] EMBEDOLOGY
    SAUER, T
    YORKE, JA
    CASDAGLI, M
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (3-4) : 579 - 616
  • [22] SCHUSTER HG, 1984, JDETERMINISTIC CHAOS, P97
  • [23] IDENTIFICATION AND PREDICTION OF LOW DIMENSIONAL DYNAMICS
    SMITH, LA
    [J]. PHYSICA D, 1992, 58 (1-4): : 50 - 76
  • [24] NONLINEAR FORECASTING AS A WAY OF DISTINGUISHING CHAOS FROM MEASUREMENT ERROR IN TIME-SERIES
    SUGIHARA, G
    MAY, RM
    [J]. NATURE, 1990, 344 (6268) : 734 - 741
  • [25] Takens F., 1981, DYNAMICAL SYSTEMS TU, V898, P366, DOI [10.1007/BFb0091924, 10.1007/BFB0091924, 10.1007/bfb0091924, DOI 10.1007/BFB0091924]
  • [26] DETERMINING LYAPUNOV EXPONENTS FROM A TIME-SERIES
    WOLF, A
    SWIFT, JB
    SWINNEY, HL
    VASTANO, JA
    [J]. PHYSICA D, 1985, 16 (03): : 285 - 317
  • [27] ESTIMATING THE LYAPUNOV-EXPONENT SPECTRUM FROM SHORT-TIME SERIES OF LOW PRECISION
    ZENG, X
    EYKHOLT, R
    PIELKE, RA
    [J]. PHYSICAL REVIEW LETTERS, 1991, 66 (25) : 3229 - 3232