ALTERNATIVE METHOD TO FIND ORBITS IN CHAOTIC SYSTEMS

被引:29
作者
HANSEN, KT [1 ]
机构
[1] UNIV FREIBURG,FAK PHYS,D-79104 FREIBURG,GERMANY
来源
PHYSICAL REVIEW E | 1995年 / 52卷 / 03期
关键词
D O I
10.1103/PhysRevE.52.2388
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present here a method which applies well ordered symbolic dynamics to find unstable periodic and nonperiodic orbits in a chaotic system. The method is simple and efficient and has been successfully applied to a number of different systems such as the Henon map, disk billiards, stadium billiard, wedge billiard, diamagnetic Kepler problem, colinear helium atom, and systems with attracting potentials. The method seems to be better than earlier applied methods.
引用
收藏
页码:2388 / 2391
页数:4
相关论文
共 20 条
[1]   UNSTABLE PERIODIC-ORBITS IN THE STADIUM BILLIARD [J].
BIHAM, O ;
KVALE, M .
PHYSICAL REVIEW A, 1992, 46 (10) :6334-6339
[2]   CHARACTERIZATION OF UNSTABLE PERIODIC-ORBITS IN CHAOTIC ATTRACTORS AND REPELLERS [J].
BIHAM, O ;
WENZEL, W .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :819-822
[3]   UNSTABLE PERIODIC-ORBITS AND THE SYMBOLIC DYNAMICS OF THE COMPLEX HENON MAP [J].
BIHAM, O ;
WENZEL, W .
PHYSICAL REVIEW A, 1990, 42 (08) :4639-4646
[4]   TOPOLOGICAL AND METRIC PROPERTIES OF HENON-TYPE STRANGE ATTRACTORS [J].
CVITANOVIC, P ;
GUNARATNE, GH ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1988, 38 (03) :1503-1520
[5]   PERIODIC-ORBITS AS THE SKELETON OF CLASSICAL AND QUANTUM CHAOS [J].
CVITANOVIC, P .
PHYSICA D, 1991, 51 (1-3) :138-151
[6]   INDEXES IN CLASSICAL MECHANICS [J].
ECKHARDT, B ;
WINTGEN, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (18) :4335-4348
[7]   THE HYDROGEN-ATOM IN A UNIFORM MAGNETIC-FIELD - AN EXAMPLE OF CHAOS [J].
FRIEDRICH, H ;
WINTGEN, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1989, 183 (02) :37-79
[8]   GENERATING PARTITIONS FOR THE DISSIPATIVE HENON MAP [J].
GRASSBERGER, P ;
KANTZ, H .
PHYSICS LETTERS A, 1985, 113 (05) :235-238
[9]  
GUTZWILLER M., 1990, CHAOS CLASSICAL QUAN
[10]   Pruning of orbits in four-disk and hyperbola billiards [J].
Hansen, Kai T. .
CHAOS, 1992, 2 (01) :71-75