Pruning of orbits in four-disk and hyperbola billiards

被引:19
作者
Hansen, Kai T. [1 ,2 ]
机构
[1] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
[2] Univ Oslo, Dept Phys, N-0316 Oslo, Norway
关键词
D O I
10.1063/1.165900
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that for the four-disk system and the hyperbola billiard it is possible to construct a new symbolic plane preserving the orientation existing in the dynamical space. Physical orbits are mapped into the topological well-ordered plane and it is shown that the forbidden and allowed orbits are separated by a monotone pruning front.
引用
收藏
页码:71 / 75
页数:5
相关论文
共 27 条
[1]  
Christiansen F., 1989, THESIS
[2]   TOPOLOGICAL AND METRIC PROPERTIES OF HENON-TYPE STRANGE ATTRACTORS [J].
CVITANOVIC, P ;
GUNARATNE, GH ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1988, 38 (03) :1503-1520
[3]   PERIODIC-ORBITS AS THE SKELETON OF CLASSICAL AND QUANTUM CHAOS [J].
CVITANOVIC, P .
PHYSICA D, 1991, 51 (1-3) :138-151
[4]  
Cvitanovic P., 1991, APPL CHAOS EPRI WORK
[5]  
Cvitanovic P., 1991, NONLINEAR PHYS PHENO
[6]  
Cvitanovic P., 1989, NOISE CHAOS NONLINEA
[7]  
Cvitanovic P., COMMUNICATION
[8]   PERIODIC ORBIT QUANTIZATION OF BOUND CHAOTIC SYSTEMS [J].
DAHLQVIST, P ;
RUSSBERG, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (20) :4763-4778
[9]   EXISTENCE OF STABLE ORBITS IN THE X2Y2 POTENTIAL [J].
DAHLQVIST, P ;
RUSSBERG, G .
PHYSICAL REVIEW LETTERS, 1990, 65 (23) :2837-2838
[10]   ON THE TOPOLOGY OF THE HENON MAP [J].
DALESSANDRO, G ;
GRASSBERGER, P ;
ISOLA, S ;
POLITI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (22) :5285-5294