COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS AND RELATED PROBLEMS

被引:27
作者
CHAZELLE, B
EDELSBRUNNER, H
GUIBAS, L
SHARIR, M
SNOEYINK, J
机构
[1] UNIV ILLINOIS,DEPT COMP SCI,URBANA,IL 61801
[2] DIGITAL EQUIPMENT CORP,DEC SYST RES CTR,PALO ALTO,CA 94301
[3] MIT,COMP SCI LAB,CAMBRIDGE,MA 02139
[4] STANFORD UNIV,DEPT COMP SCI,STANFORD,CA 94305
[5] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[6] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
关键词
COMPUTATIONAL GEOMETRY; ARRANGEMENTS; RANDOMIZED INCREMENTAL ALGORITHMS; PROBABILISTIC BACKWARDS ANALYSIS; DAVENPORT-SCHINZEL SEQUENCES;
D O I
10.1137/0222077
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a randomized incremental algorithm for computing a single face in an arrangement of n line segments in the plane that is fairly simple to implement. The expected running time of the algorithm is O(n alpha(n)log n). The analysis of the algorithm uses a novel approach that generalizes and extends the Clarkson-Shor analysis technique [in Discrete Comput.Geom.,4 (1989), pp. 387-421]. A few extensions of the technique, obtaining efficient randomized incremental algorithms for constructing the entire arrangement of a collection of line segments and for computing a single face in an arrangement of Jordan arcs are also presented.
引用
收藏
页码:1286 / 1302
页数:17
相关论文
共 20 条
[1]   AN OPTIMAL ALGORITHM FOR THE BOUNDARY OF A CELL IN A UNION OF RAYS [J].
ALEVIZOS, P ;
BOISSONNAT, JD ;
PREPARATA, FP .
ALGORITHMICA, 1990, 5 (04) :573-590
[2]  
BOISSONNAT JD, 1990, JUN P JOURN GEOM ALG, P7
[3]   AN OPTIMAL ALGORITHM FOR INTERSECTING LINE SEGMENTS IN THE PLANE [J].
CHAZELLE, B ;
EDELSBRUNNER, H .
JOURNAL OF THE ACM, 1992, 39 (01) :1-54
[4]  
CHEW LP, 1988, UNPUB SIMPLEST VORON
[5]   APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY .2. [J].
CLARKSON, KL ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :387-421
[6]   SIMULATION OF SIMPLICITY - A TECHNIQUE TO COPE WITH DEGENERATE CASES IN GEOMETRIC ALGORITHMS [J].
EDELSBRUNNER, H ;
MUCKE, EP .
ACM TRANSACTIONS ON GRAPHICS, 1990, 9 (01) :66-104
[7]   THE COMPLEXITY AND CONSTRUCTION OF MANY FACES IN ARRANGEMENTS OF LINES AND OF SEGMENTS [J].
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) :161-196
[8]   RANDOMIZED INCREMENTAL CONSTRUCTION OF DELAUNAY AND VORONOI DIAGRAMS [J].
GUIBAS, LJ ;
KNUTH, DE ;
SHARIR, M .
ALGORITHMICA, 1992, 7 (04) :381-413
[9]   ON THE GENERAL MOTION-PLANNING PROBLEM WITH 2 DEGREES OF FREEDOM [J].
GUIBAS, LJ ;
SHARIR, M ;
SIFRONY, S .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :491-521
[10]   FINDING THE UPPER ENVELOPE OF N LINE SEGMENTS IN O(N LOG N) TIME [J].
HERSHBERGER, J .
INFORMATION PROCESSING LETTERS, 1989, 33 (04) :169-174