IDENTIFICATION OF MODELS FOR CHAOTIC SYSTEMS FROM NOISY DATA - IMPLICATIONS FOR PERFORMANCE AND NONLINEAR FILTERING

被引:42
作者
LUIS, AA [1 ]
BILLINGS, SA [1 ]
机构
[1] UNIV SHEFFIELD,DEPT AUTOMAT CONTROL & SYST ENGN,SHEFFIELD S1 4DU,S YORKSHIRE,ENGLAND
来源
PHYSICA D | 1995年 / 85卷 / 1-2期
关键词
D O I
10.1016/0167-2789(95)00116-L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the identification of global models from chaotic data corrupted by additive noise. It is verified that noise has a strong influence on the identification of chaotic systems. In particular, there seems to be a critical noise level beyond which the accurate estimation of polynomial models from chaotic data becomes very difficult. Similarities with the estimation of the largest Lyapunov exponent from noisy data suggest that part of the problem might be related to the limited ability of predicting the data records when these are chaotic. A nonlinear filtering scheme is suggested in order to reduce the noise in the data and thereby enable the estimation of good models. This prediction-based filtering incorporates a resetting mechanism which enables the filtering of chaotic data and which is also applicable to non-chaotic data.
引用
收藏
页码:239 / 258
页数:20
相关论文
共 50 条
  • [31] NONLINEAR TIME SEQUENCE ANALYSIS
    Grassberger, Peter
    Schreiber, Thomas
    Schaffrath, Carsten
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03): : 521 - 547
  • [32] Grassberger Peter, 1993, Chaos, V3, P127, DOI 10.1063/1.165979
  • [33] STRUCTURE IDENTIFICATION OF NONLINEAR DYNAMIC-SYSTEMS - A SURVEY ON INPUT OUTPUT APPROACHES
    HABER, R
    UNBEHAUEN, H
    [J]. AUTOMATICA, 1990, 26 (04) : 651 - 677
  • [34] ORTHOGONAL PARAMETER-ESTIMATION ALGORITHM FOR NON-LINEAR STOCHASTIC-SYSTEMS
    KORENBERG, M
    BILLINGS, SA
    LIU, YP
    MCILROY, PJ
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1988, 48 (01) : 193 - 210
  • [35] Orthogonal approaches to time-series analysis and system identification
    Korenberg, Michael J.
    Paarmann, Larry D.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 1991, 8 (03) : 29 - 43
  • [36] NOISE-REDUCTION - FINDING THE SIMPLEST DYNAMIC SYSTEM CONSISTENT WITH THE DATA
    KOSTELICH, EJ
    YORKE, JA
    [J]. PHYSICA D, 1990, 41 (02): : 183 - 196
  • [37] NOISE-REDUCTION IN DYNAMICAL-SYSTEMS
    KOSTELICH, EJ
    YORKE, JA
    [J]. PHYSICAL REVIEW A, 1988, 38 (03): : 1649 - 1652
  • [38] INPUT OUTPUT PARAMETRIC MODELS FOR NON-LINEAR SYSTEMS .2. STOCHASTIC NON-LINEAR SYSTEMS
    LEONTARITIS, IJ
    BILLINGS, SA
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1985, 41 (02) : 329 - 344
  • [39] INPUT OUTPUT PARAMETRIC MODELS FOR NON-LINEAR SYSTEMS .1. DETERMINISTIC NON-LINEAR SYSTEMS
    LEONTARITIS, IJ
    BILLINGS, SA
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1985, 41 (02) : 303 - 328
  • [40] PARSIMONIOUS DYNAMICAL RECONSTRUCTION
    Mees, Alistair
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (03): : 669 - 675