A MASS BOUND FOR SPHERICALLY SYMMETRICAL BLACK-HOLE SPACETIMES

被引:45
作者
HEUSLER, M
机构
[1] Enrico Fermi Institute, University of Chicago, Chicago, IL 60637
关键词
D O I
10.1088/0264-9381/12/3/015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Requiring that the matter fields are subject to the dominant energy condition, we establish the lower bounds root A/16 pi and (4 pi)(-1)kappa A for the total mass M of a static, spherically symmetric black hole spacetime. (A and kappa denote the area and the surface gravity of the horizon, respectively.) Together with the fact that the Komar integral provides a simple relation between M - (4 pi)(-1)kappa A and the strong energy condition, this enables us to prove that the Schwarzschild metric represents the only static, spherically symmetric black hole solution of a self-gravitating matter model satisfying the dominant, but violating the strong energy condition for the timelike Killing field K at every point, that is R(K, K) less than or equal to O. Applying this result to scalar fields, we recover the fact that the only black hole configuration of the spherically symmetric Einstein-Higgs model with arbitrary non-negative potential is the Schwarzschild spacetime with constant Higgs field. In the presence of electromagnetic fields, we also derive a stronger bound for the total mass, involving the electromagnetic potentials and charges. Again, this estimate provides a simple tool to prove a 'no hair' theorem' for matter fields violating the strong energy condition.
引用
收藏
页码:779 / 789
页数:11
相关论文
共 32 条
[1]   COORDINATE INVARIANCE AND ENERGY EXPRESSIONS IN GENERAL RELATIVITY [J].
ARNOWITT, R ;
MISNER, CW ;
DESER, S .
PHYSICAL REVIEW, 1961, 122 (03) :997-&
[2]   NONEXISTENCE OF BARYON NUMBER FOR BLACK HOLES .2. [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1972, 5 (10) :2403-+
[3]  
BUNTING GL, 1987, GEN RELAT GRAVIT, V19, P174
[4]   ON THE TOPOLOGY OF STATIONARY BLACK-HOLES [J].
CHRUSCIEL, PT ;
WALD, RM .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (12) :L147-L152
[5]   MAXIMAL HYPERSURFACES IN STATIONARY ASYMPTOTICALLY FLAT SPACETIMES [J].
CHRUSCIEL, PT ;
WALD, RM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 163 (03) :561-604
[6]   NEW BLACK-HOLE SOLUTIONS WITH HAIR [J].
DROZ, S ;
HEUSLER, M ;
STRAUMANN, N .
PHYSICS LETTERS B, 1991, 268 (3-4) :371-376
[7]  
DROZ S, 1992, PHYS LETT B, V285, P21
[8]  
DROZ S, 1991, PHYS LETT B, V271, P61
[9]   ANOTHER REPORT ON HARMONIC MAPS [J].
EELLS, J ;
LEMAIRE, L .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :385-524
[10]  
Eells J., 1978, B LOND MATH SOC, V10, P1, DOI DOI 10.1112/BLMS/10.1.1