Compound Poisson approximations for word patterns under Markovian hypotheses

被引:27
作者
Geske, MX
Godbole, AP
Schaffner, AA
Skolnick, AM
Wallstrom, GL
机构
[1] ST NORBERT COLL, DE PERE, WI 54115 USA
[2] MICHIGAN TECHNOL UNIV, HOUGHTON, MI 49931 USA
[3] WASHINGTON UNIV, ST LOUIS, MO 63130 USA
[4] LEHIGH UNIV, BETHLEHEM, PA 18015 USA
[5] UNIV MINNESOTA, MINNEAPOLIS, MN 55455 USA
关键词
overlapping and non-overlapping occurrences of word patterns; Poisson and compound Poisson approximation; Stein-Chen technique; coupling; rates of convergence to stationarity;
D O I
10.2307/3215201
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a stationary Markov chain {X(j)}(n)(j=1) with state space consisting of the xi-letter alphabet set Lambda = {a(1), a(2), a(xi)}. We study the variables M=M(n, k) and N=N(n, k), defined, respectively, as the number of overlapping and non-overlapping occurrences of a fixed periodic kappa-letter word, and use the Stein-Chen method to obtain compound Poisson approximations for their distribution.
引用
收藏
页码:877 / 892
页数:16
相关论文
共 18 条
[11]   POISSON APPROXIMATIONS FOR RUNS AND PATTERNS OF RARE EVENTS [J].
GODBOLE, AP .
ADVANCES IN APPLIED PROBABILITY, 1991, 23 (04) :851-865
[12]   DEPENDENT THINNING OF POINT PROCESSES [J].
ISHAM, V .
JOURNAL OF APPLIED PROBABILITY, 1980, 17 (04) :987-995
[13]  
Janson S., 1992, POISSON APPROXIMATIO
[14]   STEIN'S METHOD FOR COMPOUND POISSON APPROXIMATION: THE LOCAL APPROACH [J].
Roos, Malgorzata .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (04) :1177-1187
[15]   GENERAL POISSON APPROXIMATION THEOREM [J].
SERFLING, RJ .
ANNALS OF PROBABILITY, 1975, 3 (04) :726-731
[16]   COMPOUND POISSON APPROXIMATIONS FOR SUMS OF RANDOM-VARIABLES [J].
SERFOZO, RF .
ANNALS OF PROBABILITY, 1986, 14 (04) :1391-1398
[17]   ON THE LIMIT OF THE MARKOV BINOMIAL-DISTRIBUTION [J].
WANG, YH .
JOURNAL OF APPLIED PROBABILITY, 1981, 18 (04) :937-942
[18]  
[No title captured]