POLYAKOV SPIN FACTORS AND LAPLACIANS ON HOMOGENEOUS SPACES

被引:11
作者
JAROSZEWICZ, T
KURZEPA, PS
机构
[1] Department of Physics, University of California, Los Angeles, Los Angeles
关键词
D O I
10.1016/0003-4916(92)90286-U
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the Laplacian Δ(A) associated with parallel transport of spin on the bundle SN ← E+. This Laplacian, previously used to construct the generalization of the Polyakov spin factor to an arbitrary number of dimensions N + 1, involves a nonabelian SO(N) monopole connection A. Using methods of differential geometry and harmonic analysis on homogeneous spaces, we prove that Δ(A) is given by the difference of two quadratic Casimir operators associated with Spin(N + 1) and Spin(N), respectively. We then employ the Gel'fand-Zetlin method to characterize the spectrum and eigenfunctions of -Δ(A). In particular, we prove the previously conjectured degeneracy of the ground state. © 1992.
引用
收藏
页码:135 / 165
页数:31
相关论文
共 79 条
[1]  
AIZENMAN M, 1981, PHYS REV LETT, V41, P1
[2]   A RANDOM-WALK REPRESENTATION OF THE DIRAC PROPAGATOR [J].
AMBJORN, J ;
DURHUUS, B ;
JONSSON, T .
NUCLEAR PHYSICS B, 1990, 330 (2-3) :509-522
[3]  
[Anonymous], 1989, GROUP THEORY ITS APP
[4]  
[Anonymous], 1987, GAUGE FIELDS STRINGS
[5]   ON REPRESENTATIONS OF SEMISIMPLE LIE GROUPS .2. [J].
BAIRD, GE ;
BIEDENHARN, LC .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (12) :1449-&
[6]  
Barut AO, 1980, THEORY GROUP REPRESE
[7]   A GEOMETRICAL INTERPRETATION OF SPIN [J].
BATENBURG, P ;
SCHAKEL, AMJ .
MODERN PHYSICS LETTERS A, 1989, 4 (14) :1355-1363
[8]  
Benn I.M., 1987, INTRO SPINORS GEOMET
[9]  
BEREZIN FA, 1958, DOKL AKAD NAUK SSSR+, V118, P9
[10]   LORENTZ INVARIANCE FROM CLASSICAL PARTICLE PATHS IN QUANTUM FIELD-THEORY OF ELECTRIC AND MAGNETIC CHARGE [J].
BRANDT, RA ;
NERI, F ;
ZWANZIGER, D .
PHYSICAL REVIEW D, 1979, 19 (04) :1153-1167