POLYAKOV SPIN FACTORS AND LAPLACIANS ON HOMOGENEOUS SPACES

被引:11
作者
JAROSZEWICZ, T
KURZEPA, PS
机构
[1] Department of Physics, University of California, Los Angeles, Los Angeles
关键词
D O I
10.1016/0003-4916(92)90286-U
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the Laplacian Δ(A) associated with parallel transport of spin on the bundle SN ← E+. This Laplacian, previously used to construct the generalization of the Polyakov spin factor to an arbitrary number of dimensions N + 1, involves a nonabelian SO(N) monopole connection A. Using methods of differential geometry and harmonic analysis on homogeneous spaces, we prove that Δ(A) is given by the difference of two quadratic Casimir operators associated with Spin(N + 1) and Spin(N), respectively. We then employ the Gel'fand-Zetlin method to characterize the spectrum and eigenfunctions of -Δ(A). In particular, we prove the previously conjectured degeneracy of the ground state. © 1992.
引用
收藏
页码:135 / 165
页数:31
相关论文
共 79 条
[61]  
Sommen F., 1981, TOKYO J MATH, V4, P427, DOI DOI 10.3836/TJM/1270215166
[62]  
Srinivasa Varadhan S. R., 1969, LOCAL QUANTUM THEORY
[63]   GENERALIZATION OF CAUCHY-RIEMANN EQUATIONS AND REPRESENTATIONS OF ROTATION GROUP [J].
STEIN, EM ;
WEISS, G .
AMERICAN JOURNAL OF MATHEMATICS, 1968, 90 (01) :163-&
[64]   SUPERSYMMETRY AND THE QUANTUM-MECHANICS OF SPIN [J].
STONE, M .
NUCLEAR PHYSICS B, 1989, 314 (03) :557-586
[65]  
STRATHDEE J, 1983, SUPERGRAVITY 1982
[66]   LOOP SPACE SOLUTION OF TWO-DIMENSIONAL QCD [J].
STROMINGER, A .
PHYSICS LETTERS B, 1981, 101 (04) :271-276
[67]  
Terras A., 1985, HARMONIC ANAL SYMMET
[68]  
TERRAS A, 1988, HARMONIC ANAL SYMMET, V2
[70]  
Vilenkin N Ja, 1968, TRANSLATIONS MATH MO, V22