POLYAKOV SPIN FACTORS AND LAPLACIANS ON HOMOGENEOUS SPACES

被引:11
作者
JAROSZEWICZ, T
KURZEPA, PS
机构
[1] Department of Physics, University of California, Los Angeles, Los Angeles
关键词
D O I
10.1016/0003-4916(92)90286-U
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the Laplacian Δ(A) associated with parallel transport of spin on the bundle SN ← E+. This Laplacian, previously used to construct the generalization of the Polyakov spin factor to an arbitrary number of dimensions N + 1, involves a nonabelian SO(N) monopole connection A. Using methods of differential geometry and harmonic analysis on homogeneous spaces, we prove that Δ(A) is given by the difference of two quadratic Casimir operators associated with Spin(N + 1) and Spin(N), respectively. We then employ the Gel'fand-Zetlin method to characterize the spectrum and eigenfunctions of -Δ(A). In particular, we prove the previously conjectured degeneracy of the ground state. © 1992.
引用
收藏
页码:135 / 165
页数:31
相关论文
共 79 条
[21]   SPIN-S SPHERICAL HARMONICS AND EDTH [J].
GOLDBERG, JN ;
MACFARLA.AJ ;
NEWMAN, ET ;
ROHRLICH, F ;
SUDARSHA.CG .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (11) :2155-&
[22]   GEOMETRICAL PHASES FROM SPINNING PARTICLES [J].
GRUNDBERG, J ;
HANSSON, TH ;
KARLHEDE, A .
PHYSICAL REVIEW D, 1990, 41 (08) :2642-2644
[23]   ON POLYAKOV SPIN FACTORS [J].
GRUNDBERG, J ;
HANSSON, TH ;
KARLHEDE, A .
NUCLEAR PHYSICS B, 1990, 347 (1-2) :420-440
[24]  
GRUNDBERG J, 1989, PHYS LETT B, V218, P32321
[25]   SPIN FACTORS FOR O(N)-EXTENDED SPINNING PARTICLES [J].
HALLING, R ;
LINDEBERG, A .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (12) :2341-2352
[26]  
HANSSON TH, 1990, USITP9013 PREPR
[27]   REPRESENTATIONS OF SEMISIMPLE LIE GROUPS .3. [J].
HARISHCHANDRA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 76 (MAR) :234-253
[28]   REPRESENTATIONS OF SEMISIMPLE LIE GROUPS .2. [J].
HARISHCHANDRA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 76 (JAN) :26-65
[29]   REPRESENTATIONS OF A SEMISIMPLE LIE GROUP ON A BANACH SPACE .1. [J].
HARISHCHANDRA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 75 (SEP) :185-243
[30]   REPRESENTATIONS OF SEMISIMPLE LIE GROUPS .5. [J].
HARISHCHANDRA .
AMERICAN JOURNAL OF MATHEMATICS, 1956, 78 (01) :1-41