MINIMAL STABILIZATIONS OF THE P-K+1-P-K APPROXIMATION OF THE STATIONARY STOKES EQUATIONS

被引:7
作者
BOFFI, D
机构
关键词
D O I
10.1142/S0218202595000139
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The triangular finite element approximation of the Stokes problem is analyzed by means of piecewise polynomials of degree k+1 for the velocity and discontinuous of degree k for the pressure. The known results are recalled, with particular interest in the restrictions required for the triangulation and in the stabilization procedures. A new less expensive stabilization method is proposed.
引用
收藏
页码:213 / 224
页数:12
相关论文
共 20 条
[1]  
[Anonymous], NOTES NUMERICAL FLUI
[2]  
Arnold D., 1984, CALCOLO, V21, P337, DOI 10.1007/bf02576171
[3]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[4]   ERROR ESTIMATES FOR FINITE-ELEMENT METHOD SOLUTION OF THE STOKES PROBLEM IN THE PRIMITIVE VARIABLES [J].
BERCOVIER, M ;
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1979, 33 (02) :211-224
[6]   STABILITY OF HIGHER-ORDER HOOD-TAYLOR METHODS [J].
BREZZI, F ;
FALK, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :581-590
[7]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[8]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[9]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[10]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77