QUANTUM (2+1) KINEMATICAL ALGEBRAS - A GLOBAL APPROACH

被引:47
作者
BALLESTEROS, A
HERRANZ, FJ
DELOLMO, MA
SANTANDER, M
机构
[1] Dept. de Fisica Teorica, Valladolid Univ.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 04期
关键词
D O I
10.1088/0305-4470/27/4/021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we give an approach to quantum deformations of the (2+1) kinematical Lie algebras within a scheme that simultaneously describes all groups of motions of classical geometries in N = 3 dimensions. We cover at once all the kinematical geometries including the quantum versions of Inonu-Wigner contractions, which are defined in a natural way and relate q-deformations as expected. We thus obtain some q-deformations previously known for the three-dimensional Euclidean and (2+1)-Poincare algebras and also some new q-deformations for these and other kinematical algebras, such as the (2+1)-de Sitter, Galilei and Newton-Hooke algebras.
引用
收藏
页码:1283 / 1297
页数:15
相关论文
共 32 条
[1]  
Abe E., 1980, CAMBRIDGE TRACTS MAT, V74
[2]   POSSIBLE KINEMATICS [J].
BACRY, H ;
LEVYLEBL.JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (10) :1605-&
[3]   QUANTUM STRUCTURE OF THE MOTION GROUPS OF THE 2-DIMENSIONAL CAYLEY-KLEIN GEOMETRIES [J].
BALLESTEROS, A ;
HERRANZ, FJ ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (21) :5801-5823
[4]   HEISENBERG XXZ MODEL AND QUANTUM GALILEI GROUP [J].
BONECHI, F ;
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (15) :L939-L943
[5]   QUANTUM GALILEI GROUP AS SYMMETRY OF MAGNONS [J].
BONECHI, F ;
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
PHYSICAL REVIEW B, 1992, 46 (09) :5727-5730
[6]   INHOMOGENEOUS QUANTUM GROUPS AS SYMMETRIES OF PHONONS [J].
BONECHI, F ;
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
PHYSICAL REVIEW LETTERS, 1992, 68 (25) :3718-3720
[7]  
BONECHI F, 1992, PHYS LETT B, V280, P180
[8]  
CELEGHINI E, 1992, LECT NOTES MATH, V1510, P221
[9]   THE 3-DIMENSIONAL EUCLIDEAN QUANTUM GROUP E(3)Q AND ITS R-MATRIX [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1159-1165
[10]   DISCRETE AND CONTINUOUS GRADED CONTRACTIONS OF LIE-ALGEBRAS AND SUPERALGEBRAS [J].
DEMONTIGNY, M ;
PATERA, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (03) :525-547