QUANTUM DEFORMATIONS OF D=4 POINCARE AND WEYL ALGEBRA FROM Q-DEFORMED D=4 CONFORMAL ALGEBRA

被引:50
作者
LUKIERSKI, J [1 ]
NOWICKI, A [1 ]
机构
[1] UNIV BORDEAUX 1,PHYS THEOR LAB,F-33175 GRADIGNAN,FRANCE
关键词
D O I
10.1016/0370-2693(92)90396-L
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe the Cartan-Weyl basis of the quantum Lie algebra U(q)(Sl(4; C)) and consider two choices of its real forms describing two different q-deformations U(q)(i)(O(4, 2)) (i = 1, 2) of the D = 4 conformal algebra. The first choice (i = 1) contains as quantum Lie subalgebras (Hopf subalgebras) the q-deformed Lorentz algebra as well as the q-deformed Weyl algebra (Poincare algebra + dilatations). The second real form (i = 2) leads after a particular contraction [R --> infinity q --> 1] to a new kappa-deformation of the Poincare algebra, which is embedded in the 11-dimensional kappa-deformed Hopf algebra, containing besides Poincare generators an additional abelian central factor.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 17 条
[1]   TENSOR REPRESENTATION OF THE QUANTUM GROUP SLQ(2,C) AND QUANTUM MINKOWSKI SPACE [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
SCHOLL, M ;
WATAMURA, S .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1990, 48 (01) :159-165
[2]  
CAROWWATAMURA V, 1991, INT J MOD PHYS A, V6, P3081
[3]   THE QUANTUM HEISENBERG-GROUP H(1)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1155-1158
[4]   THE 3-DIMENSIONAL EUCLIDEAN QUANTUM GROUP E(3)Q AND ITS R-MATRIX [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1159-1165
[5]  
CELEGHINI E, 1991, 1ST P EIMI WORKSH QU
[6]  
DOBREV V, 1991, CANONICAL Q DEFORMAT
[7]   INTEGRABILITY AND UNIFORMIZATION IN LIOUVILLE THEORY - THE GEOMETRICAL ORIGIN OF QUANTIZED SYMMETRIES [J].
GOMEZ, C ;
SIERRA, G .
PHYSICS LETTERS B, 1991, 255 (01) :51-60
[8]  
KHOROSHKIN SM, 9113217 MOSC STATE U
[9]   Q-DEFORMATION OF POINCARE ALGEBRA [J].
LUKIERSKI, J ;
RUEGG, H ;
NOWICKI, A ;
TOLSTOY, VN .
PHYSICS LETTERS B, 1991, 264 (3-4) :331-338
[10]   REAL FORMS OF COMPLEX QUANTUM ANTI-DE-SITTER ALGEBRA UQ(SP(4-C)) AND THEIR CONTRACTION SCHEMES [J].
LUKIERSKI, J ;
NOWICKI, A ;
RUEGG, H .
PHYSICS LETTERS B, 1991, 271 (3-4) :321-328