MULTIPLE LIMIT-CYCLES IN PREDATOR-PREY MODELS

被引:28
作者
HASTINGS, A
机构
关键词
D O I
10.1007/BF00275824
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:51 / 63
页数:13
相关论文
共 25 条
[11]  
HOLLING C. S., 1959, CANADIAN ENT, V91, P293
[12]  
Holling C. S., 1974, ANNU REV ECOL SYST, V4, P1
[13]   HIGHER-ORDER HOPF BIFURCATION FORMULA AND ITS APPLICATION TO FITZHUGHS NERVE-CONDUCTION EQUATIONS [J].
HSU, ID .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 60 (01) :47-57
[14]   APPLICATION OF POINCARE-TRANSFORM TO LOTKA-VOLTERRA MODEL [J].
HSU, SB .
JOURNAL OF MATHEMATICAL BIOLOGY, 1978, 6 (01) :67-73
[15]  
HUFFAKER C. B., 1958, HILGARDIA, V27, P343
[16]   MODEL PREDATOR-PREY SYSTEM WITH FUNCTIONAL RESPONSE [J].
KAZARINOFF, ND ;
VANDENDRIESSCHE, P .
MATHEMATICAL BIOSCIENCES, 1978, 39 (1-2) :125-134
[17]   POPULATION DYNAMIC-MODELS IN HETEROGENEOUS ENVIRONMENTS [J].
LEVIN, SA .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1976, 7 :287-310
[18]   EFFECTS OF SPACE AND ENRICHMENT ON A PREDATOR-PREY SYSTEM [J].
LUCKINBI.LS .
ECOLOGY, 1974, 55 (05) :1142-1147
[19]  
MACDONALD N, 1976, Mathematical Biosciences, V28, P321, DOI 10.1016/0025-5564(76)90130-9
[20]   TIME-DELAY IN PREY-PREDATOR MODELS .2. BIFURCATION THEORY [J].
MACDONALD, N .
MATHEMATICAL BIOSCIENCES, 1977, 33 (3-4) :227-234