ALGEBRAIC-SOLUTION OF AN ANISOTROPIC RING-SHAPED OSCILLATOR

被引:19
作者
BOSCHI, H [1 ]
VAIDYA, AN [1 ]
机构
[1] UNIV FED RIO DE JANEIRO,INST FIS,BR-21944 RIO DE JANEIRO,RJ,BRAZIL
关键词
D O I
10.1016/0375-9601(90)90193-R
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using an algebraic technique related to the SO (2, 1) group we construct the Green function for the potential ar2 + b(r sin θ)-2 + c(r cos θ)-2 + dr2 sin2θ + er2 cos2θ. The energy spectrum and the normalized wave functions are also obtained. © 1990.
引用
收藏
页码:69 / 73
页数:5
相关论文
共 15 条
[1]  
[Anonymous], 1996, TABLES INTEGRALS SER
[2]  
BARUT AO, 1972, DYNAMICAL GROUPS GEN
[3]   AN EXACT SOLUTION OF A RING-SHAPED OSCILLATOR PLUS A C SEC2-THETA/R2 POTENTIAL [J].
CARPIOBERNIDO, MV ;
BERNIDO, CC .
PHYSICS LETTERS A, 1989, 134 (07) :395-399
[4]   ALGEBRAIC TREATMENT OF A DOUBLE RING-SHAPED OSCILLATOR [J].
CARPIOBERNIDO, MV ;
BERNIDO, CC .
PHYSICS LETTERS A, 1989, 137 (1-2) :1-3
[5]   EXACT PATH INTEGRAL FOR THE RING POTENTIAL [J].
CHETOUANI, L ;
GUECHI, L ;
HAMMANN, TF .
PHYSICS LETTERS A, 1987, 125 (6-7) :277-281
[6]   ENUMERATION OF POTENTIALS FOR WHICH ONE-PARTICLE SCHROEDINGER EQUATIONS ARE SEPARABLE [J].
EISENHART, LP .
PHYSICAL REVIEW, 1948, 74 (01) :87-89
[7]   MOTION OF A BODY IN A RING-SHAPED POTENTIAL [J].
HARTMANN, H .
THEORETICA CHIMICA ACTA, 1972, 24 (2-3) :201-&
[8]   DYNAMIC INVARIANCE ALGEBRA OF THE HARTMANN POTENTIAL [J].
KIBLER, M ;
WINTERNITZ, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (13) :4097-4108
[9]   A SYSTEMATIC SEARCH FOR NONRELATIVISTIC SYSTEMS WITH DYNAMICAL SYMMETRIES .I. INTEGRALS OF MOTION [J].
MAKAROV, AA ;
SMORODIN.JA ;
VALIEV, K ;
Winternitz, P .
NUOVO CIMENTO A, 1967, 52 (04) :1061-+
[10]   THE O(2.1) ALGEBRA AND THE ELECTRON GREEN-FUNCTION IN A COULOMB FIELD [J].
MILSHTEIN, AI ;
STRAKHOVENKO, VM .
PHYSICS LETTERS A, 1982, 90 (09) :447-450