BOUNDARY AND INTERFACE CONDITIONS WITHIN A FINITE-ELEMENT PRECONDITIONER FOR SPECTRAL METHODS

被引:17
作者
CANUTO, C [1 ]
PIETRA, P [1 ]
机构
[1] CNR,IST ANAL NUMER,I-27100 PAVIA,ITALY
关键词
D O I
10.1016/0021-9991(90)90040-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The performances of a finite element preconditioner in the iterative solution of spectral collocation schemes for elliptic boundary value problems is investigated. It is shown how to make the preconditioner cheap by ADI iterations and how to take advantage of the finite element properties in enforcing Neumann and interface conditions in the spectral schemes. © 1990.
引用
收藏
页码:310 / 343
页数:34
相关论文
共 18 条
[1]   AN ADAPTIVE PSEUDO-SPECTRAL METHOD FOR REACTION DIFFUSION-PROBLEMS [J].
BAYLISS, A ;
GOTTLIEB, D ;
MATKOWSKY, BJ ;
MINKOFF, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 81 (02) :421-443
[2]   FRONTS, RELAXATION OSCILLATIONS, AND PERIOD DOUBLING IN SOLID FUEL COMBUSTION [J].
BAYLISS, A ;
MATKOWSKY, BJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 71 (01) :147-168
[3]   PRECONDITIONED MINIMAL RESIDUAL METHODS FOR TSCHEBYSCHEFF SPECTRAL CALCULATIONS [J].
CANUTO, C ;
QUARTERONI, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (02) :315-337
[4]  
CANUTO C, 1987, SEP INT S VECT PAR P
[5]  
Canuto C., 2012, SPECTRAL METHODS EVO
[6]   TSCHEBYSCHEFF PSEUDOSPECTRAL SOLUTION OF 2ND-ORDER ELLIPTIC-EQUATIONS WITH FINITE-ELEMENT PRECONDITIONING [J].
DEVILLE, M ;
MUND, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (03) :517-533
[7]  
DEVILLE M, UNPUB FINITE ELEMENT
[8]  
DIHN QV, 1984, ELLIPTIC PROBLEM SOL, V2, P395
[9]  
Douglas J, 1962, NUMER MATH, V4, P41, DOI DOI 10.1007/BF01386295
[10]  
Douglas J. Jr., 1970, P S NUM SOL PART DIF, P133