BOX-COUNTING MULTIFRACTAL ANALYSIS

被引:47
作者
MEISEL, LV
JOHNSON, M
COTE, PJ
机构
[1] Research, Development and Engineering Center, Close Combat Armament Center, Benet Laboratories, Watervliet
来源
PHYSICAL REVIEW A | 1992年 / 45卷 / 10期
关键词
D O I
10.1103/PhysRevA.45.6989
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Two box-counting algorithms for the determination of generalized fractal dimensions are described. Results of application of the algorithms to Euclidean curves, quadric islands, Koch symmetric and asymmetric triadic snowflakes, and split snowflake halls introduced by Mandelbrot [Fractal Geometry of Nature (Freeman, New York, 1983)] are described. Comparison to analytic results for the model curves is provided and the effectiveness of the algorithms is discussed.
引用
收藏
页码:6989 / 6996
页数:8
相关论文
共 9 条
[1]   EFFICIENT BOX-COUNTING DETERMINATION OF GENERALIZED FRACTAL DIMENSIONS [J].
BLOCK, A ;
VONBLOH, W ;
SCHELLNHUBER, HJ .
PHYSICAL REVIEW A, 1990, 42 (04) :1869-1874
[2]  
Gould H., 1990, Computers in Physics, V4, P202
[3]   FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS [J].
HALSEY, TC ;
JENSEN, MH ;
KADANOFF, LP ;
PROCACCIA, I ;
SHRAIMAN, BI .
PHYSICAL REVIEW A, 1986, 33 (02) :1141-1151
[4]   THE INFINITE NUMBER OF GENERALIZED DIMENSIONS OF FRACTALS AND STRANGE ATTRACTORS [J].
HENTSCHEL, HGE ;
PROCACCIA, I .
PHYSICA D, 1983, 8 (03) :435-444
[5]   AN EFFICIENT ALGORITHM FOR FAST O(N-STAR-IN(N)) BOX COUNTING [J].
HOU, XJ ;
GILMORE, R ;
MINDLIN, GB ;
SOLARI, HG .
PHYSICS LETTERS A, 1990, 151 (1-2) :43-46
[6]   A FAST ALGORITHM TO DETERMINE FRACTAL DIMENSIONS BY BOX COUNTING [J].
LIEBOVITCH, LS ;
TOTH, T .
PHYSICS LETTERS A, 1989, 141 (8-9) :386-390
[7]  
Mandelbrot B.B., 1983, AMJPHYS
[8]   EXACTLY SELF-SIMILAR LEFT-SIDED MULTIFRACTAL MEASURES [J].
MANDELBROT, BB ;
EVERTSZ, CJG ;
HAYAKAWA, Y .
PHYSICAL REVIEW A, 1990, 42 (08) :4528-4536
[9]  
Press W. H., 1992, NUMERICAL RECIPES EX