A COMPLEMENTARY VOLUME APPROACH FOR MODELLING THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS USING DUAL DELAUNAY/VORONOI TESSELLATIONS

被引:13
作者
Cavendish, J. C. [1 ]
Hall, C. A. [2 ]
Porsching, T. A. [2 ]
机构
[1] Gen Motors Res Labs, Dept Math, Warren, MI 48090 USA
[2] Univ Pittsburgh, Dept Math & Stat, Pittsburgh, PA 15260 USA
关键词
Navier-Stokes equations; Delaunay/Voronoi tessellations;
D O I
10.1108/EUM0000000004109
中图分类号
O414.1 [热力学];
学科分类号
摘要
We describe a new mathematical approach for deriving and solving covolume models of the three-dimensional, incompressible Navier-Stokes flow equations. The approach integrates three technical components into a single modelling algorothm: automatic grid generation; covolume equation generation; dual variable reduction.
引用
收藏
页码:329 / 345
页数:17
相关论文
共 26 条
[11]   GRAPH-THEORY AND FLUID-DYNAMICS [J].
GUSTAFSON, K ;
HARTMAN, R .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1985, 6 (04) :643-656
[12]  
Hall C. A., 1994, INT J COMPUT FLUID D, V2, P111
[13]   ON A NETWORK METHOD FOR UNSTEADY INCOMPRESSIBLE FLUID-FLOW ON TRIANGULAR GRIDS [J].
HALL, CA ;
PORSCHING, TA ;
MESINA, GL .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1992, 15 (12) :1383-1406
[14]   NUMERICAL-SOLUTION OF NAVIER-STOKES PROBLEMS BY THE DUAL VARIABLE METHOD [J].
HALL, CA .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1985, 6 (02) :220-236
[15]   THE DUAL VARIABLE METHOD FOR SOLVING FLUID-FLOW DIFFERENCE-EQUATIONS ON DELAUNAY TRIANGULATIONS [J].
HALL, CA ;
CAVENDISH, JC ;
FREY, WH .
COMPUTERS & FLUIDS, 1991, 20 (02) :145-164
[16]   NUMERICAL CALCULATION OF TIME-DEPENDENT VISCOUS INCOMPRESSIBLE FLOW OF FLUID WITH FREE SURFACE [J].
HARLOW, FH ;
WELCH, JE .
PHYSICS OF FLUIDS, 1965, 8 (12) :2182-&
[17]  
Nicolaides R. A., 1989, P 7 INT C FIN EL FLO, P1
[18]  
Nicolaides R. A., 1989, P 9 AIAA CFD M BUFF
[19]   DIRECT DISCRETIZATION OF PLANAR DIV-CURL PROBLEMS [J].
NICOLAIDES, RA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :32-56
[20]  
PEYRET R, 1983, COMPUTATIONAL METHOD