A COMPLEMENTARY VOLUME APPROACH FOR MODELLING THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS USING DUAL DELAUNAY/VORONOI TESSELLATIONS

被引:13
作者
Cavendish, J. C. [1 ]
Hall, C. A. [2 ]
Porsching, T. A. [2 ]
机构
[1] Gen Motors Res Labs, Dept Math, Warren, MI 48090 USA
[2] Univ Pittsburgh, Dept Math & Stat, Pittsburgh, PA 15260 USA
关键词
Navier-Stokes equations; Delaunay/Voronoi tessellations;
D O I
10.1108/EUM0000000004109
中图分类号
O414.1 [热力学];
学科分类号
摘要
We describe a new mathematical approach for deriving and solving covolume models of the three-dimensional, incompressible Navier-Stokes flow equations. The approach integrates three technical components into a single modelling algorothm: automatic grid generation; covolume equation generation; dual variable reduction.
引用
收藏
页码:329 / 345
页数:17
相关论文
共 26 条
[21]  
Porsching T. A., 1985, NUMER METH PART D E, V1, P295
[22]  
Porsching T. A., 1992, P 5 INT TOP M NUCL R, P1767
[23]   FINITE-DIFFERENCE METHOD FOR THERMALLY EXPANDABLE FLUID TRANSIENTS [J].
PORSCHING, TA .
NUCLEAR SCIENCE AND ENGINEERING, 1977, 64 (01) :177-186
[24]   LOCALLY EQUIANGULAR TRIANGULATIONS [J].
SIBSON, R .
COMPUTER JOURNAL, 1978, 21 (03) :243-245
[25]   COMPUTING THE N-DIMENSIONAL DELAUNAY TESSELLATION WITH APPLICATION TO VORONOI POLYTOPES [J].
WATSON, DF .
COMPUTER JOURNAL, 1981, 24 (02) :167-172
[26]  
Wu X., 1991, THESIS CARNEGIE MELL