Interobserver variability in tumor contouring affects the use of radiomics to predict mutational status

被引:35
作者
Huang, Qiao [1 ]
Lu, Lin [1 ]
Dercle, Laurent [1 ]
Lichtenstein, Philip [1 ]
Li, Yajun [1 ]
Yin, Qian [1 ]
Zong, Min [1 ]
Schwartz, Lawrence [1 ]
Zhao, Binsheng [1 ]
机构
[1] Columbia Univ, Med Ctr, Dept Radiol, New York, NY 10027 USA
关键词
radiomics; epidermal growth factor receptor; nonsmall cell lung cancer; contouring; variability;
D O I
10.1117/1.JMI.5.1.011005
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Radiomic features characterize tumor imaging phenotype. Nonsmall cell lung cancer (NSCLC) tumors are known for their complexity in shape and wide range in density. We explored the effects of variable tumor contouring on the prediction of epidermal growth factor receptor (EGFR) mutation status by radiomics in NSCLC patients treated with a targeted therapy (Gefitinib). Forty-six early stage NSCLC patients (EGFR mutant: wildtype = 20: 26) were included. Three experienced radiologists independently delineated the tumors using a semiautomated segmentation software on a noncontrast-enhanced baseline and three-week post-therapy CT scan images that were reconstructed using 1.25-mm slice thickness and lung kernel. Eighty-nine radiomic features were computed on both scans and their changes (radiomic delta-features) were calculated. The highest area under the curves (AUCs) were 0.87, 0.85, and 0.80 for the three radiologists and the number of significant features (AUC > 0.8) was 3, 5, and 0, respectively. The AUCs of a single feature significantly varied among radiologists (e.g., 0.88, 0.75, and 0.73 for run-length primitive length uniformity). We conclude that a three-week change in tumor imaging phenotype allows identifying the EGFR mutational status of NSCLC. However, interobserver variability in tumor contouring translates into a significant variability in radiomic metrics accuracy. (c) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:9
相关论文
共 28 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]   Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC [J].
Aerts, Hugo J. W. L. ;
Grossmann, Patrick ;
Tan, Yongqiang ;
Oxnard, Geoffrey G. ;
Rizvi, Naiyer ;
Schwartz, Lawrence H. ;
Zhao, Binsheng .
SCIENTIFIC REPORTS, 2016, 6
[3]   Test-Retest Reproducibility Analysis of Lung CT Image Features [J].
Balagurunathan, Yoganand ;
Kumar, Virendra ;
Gu, Yuhua ;
Kim, Jongphil ;
Wang, Hua ;
Liu, Ying ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Korn, Rene ;
Zhao, Binsheng ;
Schwartz, Lawrence H. ;
Basu, Satrajit ;
Eschrich, Steven ;
Gatenby, Robert A. ;
Gillies, Robert J. .
JOURNAL OF DIGITAL IMAGING, 2014, 27 (06) :805-823
[4]   Results of Initial Low-Dose Computed Tomographic Screening for Lung Cancer [J].
Church, Timothy R. ;
Black, William C. ;
Aberle, Denise R. ;
Berg, Christine D. ;
Clingan, Kathy L. ;
Duan, Fenghai ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gierada, David S. ;
Jones, Gordon C. ;
Mahon, Irene ;
Marcus, Pamela M. ;
Sicks, JoRean D. ;
Jain, Amanda ;
Baum, Sarah .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 368 (21) :1980-1991
[5]   Radiomic phenotype features predict pathological response in non-small cell lung cancer [J].
Coroller, Thibaud P. ;
Agrawal, Vishesh ;
Narayan, Vivek ;
Hou, Ying ;
Grossmann, Patrick ;
Lee, Stephanie W. ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2016, 119 (03) :480-486
[6]   CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma [J].
Coroller, Thibaud P. ;
Grossmann, Patrick ;
Hou, Ying ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Hermann, Gretchen ;
Lambin, Philippe ;
Haibe-Kains, Benjamin ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2015, 114 (03) :345-350
[7]   Fusion of Quantitative Image and Genomic Biomarkers to Improve Prognosis Assessment of Early Stage Lung Cancer Patients [J].
Emaminejad, Nastaran ;
Qian, Wei ;
Guan, Yubao ;
Tan, Maxine ;
Qiu, Yuchen ;
Liu, Hong ;
Zheng, Bin .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (05) :1034-1043
[8]   Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-Small Cell Lung Cancer [J].
Fried, David V. ;
Tucker, Susan L. ;
Zhou, Shouhao ;
Liao, Zhongxing ;
Mawlawi, Osama ;
Ibbott, Geoffrey ;
Court, Laurence E. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2014, 90 (04) :834-842
[9]   Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer [J].
Huang, Yanqi ;
Liu, Zaiyi ;
He, Lan ;
Chen, Xin ;
Pan, Dan ;
Ma, Zelan ;
Liang, Cuishan ;
Tian, Jie ;
Liang, Changhong .
RADIOLOGY, 2016, 281 (03) :947-957
[10]   Impact of Epidermal Growth Factor Receptor and KRAS Mutations on Clinical Outcomes in Previously Untreated Non-Small Cell Lung Cancer Patients: Results of an Online Tumor Registry of Clinical Trials [J].
Jackman, David M. ;
Miller, Vincent A. ;
Cioffredi, Leigh-Anne ;
Yeap, Beow Y. ;
Jaenne, Pasi A. ;
Riely, Gregory J. ;
Ruiz, Marielle Gallegos ;
Giaccone, Giuseppe ;
Sequist, Lecia V. ;
Johnson, Bruce E. .
CLINICAL CANCER RESEARCH, 2009, 15 (16) :5267-5273