Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC

被引:170
作者
Aerts, Hugo J. W. L. [1 ,2 ,3 ,4 ]
Grossmann, Patrick [1 ,3 ,4 ]
Tan, Yongqiang [5 ,6 ]
Oxnard, Geoffrey G. [7 ]
Rizvi, Naiyer [6 ,8 ]
Schwartz, Lawrence H. [5 ,6 ]
Zhao, Binsheng [5 ,6 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiat Oncol, Boston, MA 02115 USA
[2] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Biostat, Boston, MA 02115 USA
[4] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Computat Biol, Boston, MA 02115 USA
[5] Columbia Univ Coll Phys & Surg, Dept Radiol, New York, NY 10032 USA
[6] New York Presbyterian Hosp, New York, NY USA
[7] Dana Farber Canc Inst, Dept Lowe Ctr Thorac Oncol, Dept Med, Boston, MA 02115 USA
[8] Columbia Univ Coll Phys & Surg, Dept Med, Div Oncol, New York, NY USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
RECEPTOR GENE-MUTATIONS; PHASE-III; 1ST-LINE TAXANE/CARBOPLATIN; LUNG ADENOCARCINOMAS; CETUXIMAB; GEFITINIB; CHEMOTHERAPY; OUTCOMES;
D O I
10.1038/srep33860
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Medical imaging plays a fundamental role in oncology and drug development, by providing a non-invasive method to visualize tumor phenotype. Radiomics can quantify this phenotype comprehensively by applying image-characterization algorithms, and may provide important information beyond tumor size or burden. In this study, we investigated if radiomics can identify a gefitinib response-phenotype, studying high-resolution computed-tomography (CT) imaging of forty-seven patients with early-stage non-small cell lung cancer before and after three weeks of therapy. On the baseline-scan, radiomic-feature Laws-Energy was significantly predictive for EGFR-mutation status (AUC = 0.67, p = 0.03), while volume (AUC = 0.59, p = 0.27) and diameter (AUC = 0.56, p = 0.46) were not. Although no features were predictive on the post-treatment scan (p > 0.08), the change in features between the two scans was strongly predictive (significant feature AUC-range = 0.74-0.91). A technical validation revealed that the associated features were also highly stable for test-retest (mean +/- std: ICC = 0.96 +/- 0.06). This pilot study shows that radiomic data before treatment is able to predict mutation status and associated gefitinib response non-invasively, demonstrating the potential of radiomics-based phenotyping to improve the stratification and response assessment between tyrosine kinase inhibitors (TKIs) sensitive and resistant patient populations.
引用
收藏
页数:8
相关论文
共 32 条
[1]  
Aerts HJ., Nature communications
[2]   Reproducibility and Prognosis of Quantitative Features Extracted from CT Images [J].
Balagurunathan, Yoganand ;
Gu, Yuhua ;
Wang, Hua ;
Kumar, Virendra ;
Grove, Olya ;
Hawkins, Sam ;
Kim, Jongphil ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Gatenby, Robert A. ;
Gillies, Robert J. .
TRANSLATIONAL ONCOLOGY, 2014, 7 (01) :72-87
[3]   A Collaborative Enterprise for Multi-Stakeholder Participation in the Advancement of Quantitative Imaging [J].
Buckler, Andrew J. ;
Bresolin, Linda ;
Dunnick, N. Reed ;
Sullivan, Daniel C. .
RADIOLOGY, 2011, 258 (03) :906-914
[4]   Quantitative Imaging Test Approval and Biomarker Qualification: Interrelated but Distinct Activities [J].
Buckler, Andrew J. ;
Bresolin, Linda ;
Dunnick, N. Reed ;
Sullivan, Daniel C. .
RADIOLOGY, 2011, 259 (03) :875-884
[5]   The Quantitative Imaging Network: NCI's Historical Perspective and Planned Goals [J].
Clarke, Laurence P. ;
Nordstrom, Robert J. ;
Zhang, Huiming ;
Tandon, Pushpa ;
Zhang, Yantian ;
Redmond, George ;
Farahani, Keyvan ;
Kelloff, Gary ;
Henderson, Lori ;
Shankar, Lalitha ;
Deye, James ;
Capala, Jacek ;
Jacobs, Paula .
TRANSLATIONAL ONCOLOGY, 2014, 7 (01) :1-4
[6]   CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma [J].
Coroller, Thibaud P. ;
Grossmann, Patrick ;
Hou, Ying ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Hermann, Gretchen ;
Lambin, Philippe ;
Haibe-Kains, Benjamin ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2015, 114 (03) :345-350
[7]   An introduction to ROC analysis [J].
Fawcett, Tom .
PATTERN RECOGNITION LETTERS, 2006, 27 (08) :861-874
[8]   Non-Small Cell Lung Cancer: Identifying Prognostic Imaging Biomarkers by Leveraging Public Gene Expression Microarray Data-Methods and Preliminary Results [J].
Gevaert, Olivier ;
Xu, Jiajing ;
Hoang, Chuong D. ;
Leung, Ann N. ;
Xu, Yue ;
Quon, Andrew ;
Rubin, Daniel L. ;
Napel, Sandy ;
Plevritis, Sylvia K. .
RADIOLOGY, 2012, 264 (02) :387-396
[9]   Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma [J].
Grove, Olya ;
Berglund, Anders E. ;
Schabath, Matthew B. ;
Aerts, Hugo J. W. L. ;
Dekker, Andre ;
Wang, Hua ;
Velazquez, Emmanuel Rios ;
Lambin, Philippe ;
Gu, Yuhua ;
Balagurunathan, Yoganand ;
Eikman, Edward ;
Gatenby, Robert A. ;
Eschrich, Steven ;
Gillies, Robert J. .
PLOS ONE, 2015, 10 (03)
[10]   Predicting Outcomes of Nonsmall Cell Lung Cancer Using CT Image Features [J].
Hawkins, Samuel H. ;
Korecki, John N. ;
Balagurunathan, Yoganand ;
Gu, Yuhua ;
Kumar, Virendra ;
Basu, Satrajit ;
Hall, Lawrence O. ;
Goldgof, Dmitry B. ;
Gatenby, Robert A. ;
Gillies, Robert J. .
IEEE ACCESS, 2014, 2 :1418-1426