SURFACE ROUGHENING WITH QUENCHED DISORDER IN d-DIMENSIONS

被引:10
作者
Buldyrev, Sergey V. [1 ,2 ]
Havlin, Shlomo [1 ,2 ,3 ]
Kertesz, Janos [4 ]
Shehter, Arkady [3 ]
Stanley, H. Eugene [1 ,2 ]
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Bar Ilan Univ, Dept Phys, Ramat Gan, Israel
[4] Tech Univ Budapest, Inst Phys, H-1521 Budapest 11, Hungary
关键词
D O I
10.1142/S0218348X9300085X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review recent numerical simulations of several models of interface growth in d-dimensional media with quenched disorder. These models belong to the universality class of anisotropic diode-resistor percolation networks. The values of the roughness exponent alpha = 0.63 0.01 (d =1+1) and alpha = 0.48 +/- 0.02 (d = 2 + 1) are in good agreement with our recent experiments. We study also the diode-resistor percolation on a Cayley tree. We find that P-infinity similar to exp(-A/root p(c)-p), thus suggesting that the critical exponent for P-infinity similar to (p(c)-p)(beta p) , beta(p) = infinity and that the upper critical dimension in this problem is d = d(c) = infinity. Other critical exponents on the Cayley tree are: tau = 3, v(parallel to) = nu(perpendicular to) = gamma = sigma = 0. The exponents related to roughness are: alpha = beta = 0, z = 2.
引用
收藏
页码:827 / 839
页数:13
相关论文
共 47 条
  • [1] BARABASI AL, 1992, SURFACE DISORDERING
  • [2] Buldyrev S. V., IN PRESS
  • [3] ANISOTROPIC PERCOLATION AND THE D-DIMENSIONAL SURFACE ROUGHENING PROBLEM
    BULDYREV, SV
    HAVLIN, S
    STANLEY, HE
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 200 (1-4) : 200 - 211
  • [4] ANOMALOUS INTERFACE ROUGHENING IN POROUS-MEDIA - EXPERIMENT AND MODEL
    BULDYREV, SV
    BARABASI, AL
    CASERTA, F
    HAVLIN, S
    STANLEY, HE
    VICSEK, T
    [J]. PHYSICAL REVIEW A, 1992, 45 (12): : R8313 - R8316
  • [5] ANOMALOUS INTERFACE ROUGHENING IN 3D POROUS-MEDIA - EXPERIMENT AND MODEL
    BULDYREV, SV
    BARABASI, AL
    HAVLIN, S
    KERTESZ, J
    STANLEY, HE
    XENIAS, HS
    [J]. PHYSICA A, 1992, 191 (1-4): : 220 - 226
  • [6] Bunde A., 1991, FRACTALS DISORDERED
  • [7] DYNAMICS OF SURFACE ROUGHENING IN DISORDERED MEDIA
    CSAHOK, Z
    HONDA, K
    SOMFAI, E
    VICSEK, M
    VICSEK, T
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 200 (1-4) : 136 - 154
  • [8] EXPERIMENTAL-EVIDENCE FOR SELF-AFFINE ROUGHENING IN A MICROMODEL OF GEOMORPHOLOGICAL EVOLUTION
    CZIROK, A
    SOMFAI, E
    VICSEK, T
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (13) : 2154 - 2157
  • [9] DUALITY TRANSFORMATIONS FOR TWO-DIMENSIONAL DIRECTED PERCOLATION AND RESISTANCE PROBLEMS
    DHAR, D
    BARMA, M
    PHANI, MK
    [J]. PHYSICAL REVIEW LETTERS, 1981, 47 (18) : 1238 - 1241
  • [10] FRACTAL ASPECTS OF THE SWISS LANDSCAPE
    DIETLER, G
    ZHANG, YC
    [J]. PHYSICA A, 1992, 191 (1-4): : 213 - 219