AMIDE EXCHANGE;
DNA-BINDING PROTEIN;
GAL4;
METAL SUBSTITUTION;
NMR;
TRANSCRIPTIONAL ACTIVATION;
D O I:
10.1002/pro.5560011102
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Backbone amide proton exchange rates in the DNA-binding domain of GAL4 have been determined using H-1-N-15 heteronuclear correlation NMR spectroscopy. Three forms of the protein were studied-the native Zn-containing protein, the Cd-substituted protein, and a Zn-GAL4/DNA complex. Exchange rates in the Zn-containing protein are significantly slower than in the Cd-substituted protein. This shows that Cd-substituted GAL4 is destabilized relative to the native Zn-containing protein. Upon DNA binding, global retardation of amide proton exchange with solvent was observed, indicating that internal fluctuations of the DNA-recognition module are significantly reduced by the presence of DNA. In all forms of the protein, the internal dyad symmetry of the DNA-recognition module of GAL4 is reflected by the backbone amide proton exchange rates.