Generalized filters, the low-pass condition, and connections to multiresolution analyses

被引:9
作者
Baggett, Lawrence W. [1 ]
Furst, Veronika [3 ]
Merrill, Kathy D. [2 ]
Packer, Judith A. [1 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
[2] Colorado Coll, Dept Math, Colorado Springs, CO 80903 USA
[3] Ft Lewis Coll, Dept Math, Durango, CO 81301 USA
关键词
Wavelet; Generalized multiresolution analysis; Filter; Ruelle operator; Pure isometry; WAVELETS; CONSTRUCTION;
D O I
10.1016/j.jfa.2009.05.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study generalized filters that are associated to multiplicity functions and homomorphisms of the dual of an abelian group. These notions are based on the structure of generalized multiresolution analyses. We investigate when the Ruelle operator corresponding to such a filter is a pure isometry, and then use that characterization to study the problem of when a collection of closed subspaces, which satisfies all the conditions of a GMRA except the trivial intersection condition, must in fact have a trivial intersection. In this context, we obtain a generalization of a theorem of Bownik and Rzeszotnik. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2760 / 2779
页数:20
相关论文
共 16 条
[1]  
[Anonymous], 1992, Cambridge Stud. Adv. Math.
[2]  
[Anonymous], CBMS NSF LECT NOTES
[3]  
Baggett L, 2005, ACTA APPL MATH, V89, P251, DOI 10.1007/s10440-005-9011-4
[4]   Construction of Parseval wavelets from redundant filter systems [J].
Baggett, LW ;
Jorgensen, PET ;
Merrill, KD ;
Packer, JA .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (08)
[5]   The construction of wavelets from generalized conjugate mirror filters in L2(Rn) [J].
Baggett, LW ;
Courter, JE ;
Merrill, KD .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (03) :201-223
[6]  
BAGGETT LW, 2008, J FOURIER ANAL APPL
[7]  
BAGGETT LW, ARXIVMATH08090500
[8]   On the existence of multiresolution analysis for framelets [J].
Bownik, M ;
Rzeszotnik, Z .
MATHEMATISCHE ANNALEN, 2005, 332 (04) :705-720
[9]  
Bownik M, 2009, P AM MATH SOC, V137, P563
[10]  
Bownik M, 2008, APPL NUMER HARMON AN, P153, DOI 10.1007/978-0-8176-4683-7_8