On the existence of multiresolution analysis for framelets

被引:21
作者
Bownik, M [1 ]
Rzeszotnik, Z
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
关键词
42C40;
D O I
10.1007/s00208-005-0645-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a compactly supported tight framelet comes from an MRA if the intersection of all dyadic dilations of the space of negative dilates, which is defined as the shift-invariant space generated by the negative scales of a framelet, is trivial. We also construct examples of (non-tight) framelets, which are arbitrarily close to tight frame framelets, such that the corresponding space of negative dilates is equal to the entire space L-2(R).
引用
收藏
页码:705 / 720
页数:16
相关论文
共 31 条
[1]  
[Anonymous], 1996, 1 COURSE WAVELETS, DOI DOI 10.1201/9781420049985
[2]   SOLUTION OF 2 PROBLEMS ON WAVELETS [J].
AUSCHER, P .
JOURNAL OF GEOMETRIC ANALYSIS, 1995, 5 (02) :181-236
[3]   Generalized multi-resolution analyses and a construction procedure for all wavelet sets in Rn [J].
Baggett, LW ;
Medina, HA ;
Merrill, KD .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (06) :563-573
[4]   The structure of shift-invariant subspaces of L2(Rn) [J].
Bownik, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 177 (02) :282-309
[5]   Affine frames, GMRA's, and the canonical dual [J].
Bownik, M ;
Weber, E .
STUDIA MATHEMATICA, 2003, 159 (03) :453-479
[6]   Biorthogonal wavelets, MRA's and shift-invariant spaces [J].
Bownik, M ;
Garrigós, G .
STUDIA MATHEMATICA, 2004, 160 (03) :231-248
[7]  
Bownik M, 2003, MICH MATH J, V51, P387
[9]   Compactly supported tight and sibling frames with maximum vanishing moments [J].
Chui, CK ;
He, WJ ;
Stöckler, J .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (03) :224-262
[10]   Compactly supported tight frames associated with refinable functions [J].
Chui, CK ;
He, WJ .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (03) :293-319