Identifcation of large-scale goaf instability in underground mine using particle swarm optimization and support vector machine

被引:10
作者
Zhou Jian [1 ,2 ,3 ]
Li Xibing [1 ,2 ]
Hani S.Mitri [3 ]
Wang Shiming [1 ,2 ]
Wei Wei [1 ,2 ]
机构
[1] School of Resources and Safety Engineering,Central South University
[2] Hunan Key Lab of Resources Exploitation and Hazard Control for Deep Metal Mines
[3] Department of Mining and Materials Engineering,McGill University
关键词
Goaf; Risk identifcation; Underground mine; Prediction; Particle swarm optimization; Support vector machine;
D O I
暂无
中图分类号
TD32 [矿山压力与岩层移动];
学科分类号
0819 ;
摘要
An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and following parameters were selected as evaluation indexes in the LSGI:uniaxial compressive strength(UCS)of rock,elastic modulus(E)of rock,rock quality designation(RQD),area ration of pillar(Sp),the ratio of width to height of the pillar(w/h),depth of ore body(H),volume of goaf(V),dip of ore body(a)and area of goaf(Sg).Then LSGI forecasting model by PSO-SVM was established according to the influencing factors.The performance of hybrid model(PSO+SVM=PSO–SVM)has been compared with the grid search method of support vector machine(GSM–SVM)model.The actual data of 40 goafs are applied to research the forecasting ability of the proposed method,and two cases of underground mine are also validated by the proposed model.The results indicated that the heuristic algorithm of PSO can speed up the SVM parameter optimization search,and the predictive ability of the PSO–SVM model with the RBF kernel function is acceptable and robust,which might hold a high potential to become a useful tool in goaf risky prediction research.
引用
收藏
页码:701 / 707
页数:7
相关论文
共 15 条
[1]   基于BP神经网络的空洞型采空区稳定性评价研究 [J].
唐胜利 ;
唐皓 ;
郭辉 .
西安科技大学学报, 2012, 32 (02) :234-238+258
[2]   基于集对分析同一度的采空区处理方案研究 [J].
周健 ;
史秀志 .
金属矿山, 2009, (06) :10-13
[3]   金属矿山采空区危险性的可拓理论辨识 [J].
李克钢 ;
侯克鹏 ;
熊廷伟 .
安全与环境学报, 2009, 9 (02) :169-172
[4]   基于未确知测度理论的采空区危险性评价研究 [J].
宫凤强 ;
李夕兵 ;
董陇军 ;
刘希灵 .
岩石力学与工程学报, 2008, (02) :323-330
[5]   金属矿地下采空区探测、处理与安全评判 [J].
李夕兵 ;
李地元 ;
赵国彦 ;
周子龙 ;
宫凤强 .
采矿与安全工程学报, 2006, (01) :24-29
[6]   采空区灾害危险度的模糊综合评价 [J].
王新民 ;
段瑜 ;
彭欣 .
矿业研究与开发, 2005, (02) :83-85
[7]   神经网络在大尺度采空区损伤演化统计与预测中应用 [J].
来兴平 ;
张立杰 ;
蔡美峰 .
北京科技大学学报, 2003, (04) :300-303
[8]   东桐峪金矿空场处理机理研究 [J].
冯长根 ;
李俊平 ;
于文远 ;
薛烨 ;
李宝东 .
黄金, 2002, (10) :11-15
[9]   基于神经网络的重大危险源动态分级研究 [J].
钟茂华 ;
陈宝智 .
中国安全科学学报, 1997, (02) :9-12+25
[10]  
Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines[J] . Jian Zhou,Xibing Li,Xiuzhi Shi. Safety Science . 2011 (4)