共 25 条
基于卷积神经网络的奶牛个体身份识别方法
被引:92
作者:
赵凯旋
何东健
机构:
[1] 西北农林科技大学机械与电子工程学院
来源:
关键词:
图像技术;
算法;
识别;
卷积神经网络;
深度学习;
视频分析;
奶牛;
目标检测;
D O I:
暂无
中图分类号:
TP391.41 [];
S823.91 [];
学科分类号:
080203 ;
摘要:
视频分析技术已越来越多地应用于检测奶牛行为以给出养殖管理决策,基于图像处理的奶牛个体身份识别方法能够进一步提高奶牛行为视频分析的自动化程度。为实现基于图像处理的无接触、高精确度、适用性强的奶牛养殖场环境下的奶牛个体有效识别,提出用视频分析方法提取奶牛躯干图像,用卷积神经网络准确识别奶牛个体的方法。该方法采集奶牛直线行走时的侧视视频,用帧间差值法计算奶牛粗略轮廓,并对其二值图像进行分段跨度分析,定位奶牛躯干区域,通过二值图像比对跟踪奶牛躯干目标,得到每帧图像中奶牛躯干区域图像。通过理论分析和试验验证,确定了卷积神经网络的结构和参数,并将躯干图像灰度化后经插值运算和归一化变换为48×48大小的矩阵,作为网络的输入进行个体识别。对30头奶牛共采集360段视频,随机选取训练数据60 000帧和测试数据21 730帧。结果表明,在训练次数为10次时,代价函数收敛至0.0060,视频段样本的识别率为93.33%,单帧图像样本的识别率为90.55%。该方法可实现养殖场中奶牛个体无接触精确识别,具有适用性强、成本低的特点。
引用
收藏
页码:181 / 187
页数:7
相关论文