智能照明系统控制策略研究综述

被引:21
作者
刁建新 [1 ,2 ]
王振坤 [1 ,2 ]
姚胜 [1 ,2 ]
袁景玉 [1 ,2 ]
刘诗雨 [1 ,2 ]
机构
[1] 河北工业大学建筑与艺术设计学院
[2] 河北省健康人居环境重点实验室
关键词
智能照明; 系统构成; 控制策略;
D O I
暂无
中图分类号
TU113.66 []; TU855 [建筑物的电气化、自动化装置];
学科分类号
摘要
近年来,建筑照明能耗不断增大,智能照明成为该领域的发展方向与研究热点。针对当前智能照明系统及其控制策略与技术手段进行梳理分析,总结了智能照明系统中各模块的技术方法和措施;同时从区域人员分布、自然采光以及用户生理信息3个方面归纳总结了智能照明系统对应的控制策略。
引用
收藏
页码:44 / 51
页数:8
相关论文
共 42 条
  • [31] 天然采光与人工照明的智能结合策略
    王金光
    肖辉
    [J]. 电脑知识与技术(学术交流), 2007, (21) : 829 - 831+836
  • [32] Experimental evaluation of the performance of chair sensors in an office space for occupancy detection and occupancy-driven control[J] . Labeodan Timilehin,Aduda Kennedy,Wim Zeiler,Frank Hoving.Energy & Buildings . 2015
  • [33] Occupancy measurement in commercial office buildings for demand-driven control applications—A survey and detection system evaluation[J] . Timilehin Labeodan,Wim Zeiler,Gert Boxem,Yang Zhao.Energy & Buildings . 2015
  • [34] Distributed lighting control with daylight and occupancy adaptation[J] . Niels van de Meugheuvel,Ashish Pandharipande,David Caicedo,P.P.J. van den Hof.Energy & Buildings . 2014
  • [35] LifeLogging: Personal Big Data[J] . Cathal Gurrin,Alan F. Smeaton,Aiden R. Doherty.Foundations and Trends in Information Retrieval . 2014 (1)
  • [36] Student learning performance and indoor environmental quality (IEQ) in air-conditioned university teaching rooms[J] . M.C. Lee,K.W. Mui,L.T. Wong,W.Y. Chan,E.W.M. Lee,C.T. Cheung.Building and Environment . 2012 (Mar.)
  • [37] Potential Environmental Impacts of Light-Emitting Diodes (LEDs): Metallic Resources, Toxicity, and Hazardous Waste Classification
    Lim, Seong-Rin
    Kang, Daniel
    Ogunseitan, Oladele A.
    Schoenung, Julie M.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (01) : 320 - 327
  • [38] An information technology enabled sustainability test-bed (ITEST) for occupancy detection through an environmental sensing network
    Dong, Bing
    Andrews, Burton
    Lam, Khee Poh
    Hoeynck, Michael
    Zhang, Rui
    Chiou, Yun-Shang
    Benitez, Diego
    [J]. ENERGY AND BUILDINGS, 2010, 42 (07) : 1038 - 1046
  • [39] Daylight integrated illumination control of LED systems based on enhanced presence sensing[J] . Ashish Pandharipande,David Caicedo.Energy & Buildings . 2010 (4)
  • [40] Artificial neural networks to predict daylight illuminance in office buildings[J] . Tu??e Kazanasmaz,Murat Günaydin,Selcen Binol.Building and Environment . 2008 (8)