压缩感知(Compressed sensing,CS)技术是近几年出现的一种新兴的信号采样和压缩技术,基于该理论所获得的原始信号采样值,不仅数量大大低于基于传统的Nyquist准则的采样值,而且CS技术还具有对未知信号边感知边压缩的特性。重构算法的设计是CS技术的核心,成为学者研究的重点。本文在对国内外已经出现的重构算法进行系统地研究后,在深入地研究了贪婪追踪算法和其重构模型的基础上,给出了正交匹配追踪(OrthogonalMatching Pursuit,OMP)类算法的基本原理、优缺点及针对各种算法的缺点的改进方案。此外,为了读者更好地定位OMP类算法,本文还简要介绍了其他几种经典的重构算法。最后,把各种算法应用于图像重构,通过仿真实验分析了各种算法的重构性能、鲁棒性和复杂度,并进一步验证了各种算法的优缺点。