针对田间环境下红提葡萄果穗成熟度人眼判断效率低且易误判的问题,该研究采用K近邻(K-nearest neighbor,KNN)算法和最大类间方差(Otsu)法分别对葡萄果穗图像背景分割以找到最佳分割效果,采用圆形Hough变换识别葡萄果粒,并开发了可判别葡萄果穗成熟度的算法。研究结果表明,不论顺光、逆光或者与田间背景相似的绿色果穗,KNN法可实现良好的背景分割,然后圆形Hough变换法在边缘阈值和灵敏度分别取0.15和0.942时,识别葡萄果粒的准确率可达96.56%。在此研究基础上,采用该研究开发的葡萄果穗成熟度判断算法,可根据颜色将果粒划分不同成熟度等级,并实现对果穗成熟度判别,判别准确率为91.14%。该研究结果可为果农适宜期收获葡萄及自动化采摘提供重要指导。