为了提高基本差分进化算法的寻优速度和寻优效能,提出了一种改进的自适应差分进化算法(ADE)。在基本差分进化算法中引入了自适应变异算子,根据每个个体与最优个体适应度值的相互关系,自动地调节变异算子值,使之在进化初期较大,随着个体逐渐接近最优值,算子值逐渐变小,确保个体向最优值快速、稳定地逼近。在每一代变异、交叉和竞争之后,又增加了与随机新种群的竞争操作,使算法易于跳出局部最优点,以提高全局搜索能力。采用4个经典的测试函数对算法进行验证,结果显示:该算法的收敛速度与收敛精度在一定程度上优于基本差分进化算法,同时也优于基于代数进行自适应变异的差分进化算法。