针对番茄收获机器人视觉系统在自然光照条件下对田间成熟番茄图像进行分割的问题,研究了基于(R-G)色差特征的阈值分割方法和基于HSI颜色空间H色调的统计阈值分割方法,并对其进行了对比分析。在RGB颜色空间,首先提取了RGB彩色图像的R、G分量并做代数减运算得到色差灰度图像RG,然后对该色差灰度图像RG使用Otsu阈值法进行自适应分割;在HIS颜色空间下,统计番茄与叶子的H色调分布差异,然后对H色调灰度图像进行阈值分割。通过大量试验表明:基于(R-G)色差特征的阈值分割方法能够实现自适应阈值处理,能对不同自然光照强度下的生长状态为相互分离的多目标番茄图像进行有效分割;同时,对番茄的成熟度及品种差异也具有很好的鲁棒性,其性能大大优于基于HSI颜色空间H色调的统计阈值分割。