知识图谱在智能制造领域的研究现状及其应用前景综述

被引:68
作者
张栋豪 [1 ]
刘振宇 [1 ]
郏维强 [1 ,2 ]
刘惠 [1 ]
谭建荣 [1 ]
机构
[1] 浙江大学计算机辅助设计与图形学国家重点实验室
[2] 信雅达系统工程股份有限公司浙江省重点大数据研究院
关键词
知识图谱; 研究综述; 语义网络; 智能制造;
D O I
暂无
中图分类号
TP391.1 [文字信息处理];
学科分类号
摘要
数据和知识是新一代信息技术与智能制造深度融合的基础。然而,当前产品设计、制造、装配和服务等过程中,数据及知识的存储大多以传统关系型数据库为基础,这导致了数据及知识的冗余性和搜索及推理的低效性。近年来,知识图谱技术飞速发展起来,它本质上是基于语义网络的思想,可以实现对现实世界的事物及其相互关系的形式化描述。该技术为智能制造领域数据及知识的关联性表达和相关性搜索推理问题的解决带来了可能性,因此其在智能制造的实现过程中扮演着越来越重要的角色。为了给知识图谱在智能制造领域的应用提供理论支撑,总结了知识图谱领域的研究进展;同时探索了知识图谱在智能制造领域的3大类应用方向,共15小类应用前景,分析了在各个应用前景上与传统方法的不同之处,应用过程中所需要使用的知识图谱相关技术以及实施过程中所待突破的关键技术,希望可以为进一步展开针对知识图谱在智能制造领域的研究提供启发,同时为相关企业针对知识图谱的实际应用提供参考;最后以数控车床故障分析为案例,验证了知识图谱在智能制造领域应用的有效性。
引用
收藏
页码:90 / 113
页数:24
相关论文
共 45 条
  • [11] Modified non-Gaussian multivariate statistical process monitoring based on the Gaussian distribution transformation[J] . Wenyou Du,Yingwei Zhang,Wei Zhou.Journal of Process Control . 2020 (C)
  • [12] An adversarial bidirectional serial–parallel LSTM-based QTD framework for product quality prediction[J] . Zhenyu Liu,Donghao Zhang,Weiqiang Jia,Xianke Lin,Hui Liu.Journal of Intelligent Manufacturing . 2020 (prep)
  • [13] Complex Program Induction for Querying Knowledge Bases in the Absence of Gold Programs[J] . Amrita Saha,Ghulam Ahmed Ansari,Abhishek Laddha,Karthik Sankaranarayanan,Soumen Chakrabarti.Transactions of the Association for Computational Linguistics . 2019
  • [14] Product design and manufacturing process based ontology for manufacturing knowledge reuse
    Chhim, Peter
    Chinnam, Ratna Babu
    Sadawi, Noureddin
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2019, 30 (02) : 905 - 916
  • [15] A Survey of Techniques for Constructing Chinese Knowledge Graphs and Their Applications
    Wu, Tianxing
    Qi, Guilin
    Li, Cheng
    Wang, Meng
    [J]. SUSTAINABILITY, 2018, 10 (09)
  • [16] A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications[J] . Cai Hongyun,Zheng Vincent W.,Chang Kevin Chen Chuan.IEEE Transactions on Knowledge and Data Engineering . 2018 (9)
  • [17] Knowledge Graph Embedding: A Survey of Approaches and Applications
    Wang, Quan
    Mao, Zhendong
    Wang, Bin
    Guo, Li
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (12) : 2724 - 2743
  • [18] A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm[J] . Jiewu Leng,Pingyu Jiang.Knowledge-Based Systems . 2016
  • [19] Quantification for the importance degree of engineering characteristics with a multi-level hierarchical structure in QFD
    Jia, Weiqiang
    Liu, Zhenyu
    Lin, Zhiyun
    Qiu, Chan
    Tan, Jianrong
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2016, 54 (06) : 1627 - 1649
  • [20] Variational Graph Auto-Encoders[J] . Thomas N. Kipf,Max Welling.CoRR . 2016