扩展有限元法及与其它数值方法的联系

被引:12
作者
金峰
方修君
机构
[1] 清华大学水沙科学与水利水电工程国家重点实验室
关键词
无网格法; 有限元法; 单位分解; 扩展有限元法; 连续-非连续;
D O I
暂无
中图分类号
O242.21 [];
学科分类号
摘要
对扩展有限元方法(XFEM)的发展及其与其他数值方法的联系进行了综述。该文主要包括以下内容:首先对无网格法的发展背景和历程进行了介绍,并从近似位移场构造的角度对众多的无网格法进行了比较分析;从单位分解理论的形式出发,阐述了XFEM的特点及其与传统有限元法、无网格方法的联系;归纳了关于XFEM的应用研究及其自身理论发展的主要研究方向,并对XFEM的发展进行了展望。
引用
收藏
页码:1 / 17
页数:17
相关论文
共 69 条
[41]   Meshless methods based on collocation with radial basis functions [J].
Zhang, X ;
Song, KZ ;
Lu, MW ;
Liu, X .
COMPUTATIONAL MECHANICS, 2000, 26 (04) :333-343
[42]  
Discontinuous enrichment in finite elements with a partition of unity method.[J]..Finite Elements in Analysis & Design.2000, 3
[43]  
A new cloud-based hp finite element method.[J].J.T. Oden;C.A.M. Duarte;O.C. Zienkiewicz.Computer Methods in Applied Mechanics and Engineering.1998, 1
[44]   An Arbitrary Lagrangian-Eulerian finite element method [J].
Kjellgren, P ;
Hyvarinen, J .
COMPUTATIONAL MECHANICS, 1998, 21 (01) :81-90
[45]  
Smoothed Particle Hydrodynamics: Some recent improvements and applications.[J].P.W. Randles;L.D. Libersky.Computer Methods in Applied Mechanics and Engineering.1996, 1
[46]  
A stabilized finite point method for analysis of fluid mechanics problems.[J]..Computer Methods in Applied Mechanics and Engineering.1996, 1
[47]  
The partition of unity finite element method: Basic theory and applications.[J]..Computer Methods in Applied Mechanics and Engineering.1996, 1
[48]   Advances in multiple scale kernel particle methods [J].
Liu, WK ;
Chen, Y ;
Chang, CT ;
Belytschko, T .
COMPUTATIONAL MECHANICS, 1996, 18 (02) :73-111
[49]   SMOOTHED PARTICLE HYDRODYNAMICS STABILITY ANALYSIS [J].
SWEGLE, JW ;
HICKS, DL ;
ATTAWAY, SW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 116 (01) :123-134
[50]   SURFACES GENERATED BY MOVING LEAST-SQUARES METHODS [J].
LANCASTER, P ;
SALKAUSKAS, K .
MATHEMATICS OF COMPUTATION, 1981, 37 (155) :141-158