人工神经网络是现代信息处理领域的一个重要的方法。相对于软件实现 ,硬件实现方式能充分发挥神经网络并行处理的特点。用模拟电路实现神经网络电路形式简单、功耗低、速度快、占用芯片面积小 ,可以提高在神经网络芯片上神经元的集成度 ,神经元电路适合用模拟电路实现。文中综述了当前神经网络单元的模拟 VLSI实现的成果、新技术以及作者的工作成果。针对应用最广泛的线性和平方突触神经元 ,详细从权值存储单元、突触电路和阈值函数电路三方面来叙述。对各种实现方式的优缺点进行了比较 ,同时指出了神经网络实现电路中需要考虑的因素。最后 ,展望了用集成电路技术实现自学习神经网络的发展方向