祁连山中部土壤颗粒组分有机质碳含量及其与海拔和植被的关系

被引:13
作者
吴建国 [1 ]
艾丽 [1 ,2 ]
田自强 [1 ]
常学向 [3 ]
机构
[1] 中国环境科学研究院
[2] 广州市环境保护科学研究院
[3] 中国科学院寒区旱区环境与工程研究所
关键词
土壤有机碳; 颗粒有机碳; 祁连山;
D O I
10.16258/j.cnki.1674-5906.2008.06.054
中图分类号
S154 [土壤生物学];
学科分类号
071012 ; 0713 ;
摘要
调查分析了祁连山中段不同海拔土壤颗粒有机碳及其与植被的关系。结果显示,土壤颗粒组分比例在0~15cm和15~35cm土层随海拔升高而呈现下降趋势(P>0.2);土壤颗粒有机碳比例在0~15cm土层随海拔升高也呈现下降趋势(P≤0.001)。土壤颗粒组分比例0~15cm土层在阴坡3000m3500m、15~35cm土层在阴坡3200m和3500m及半阴坡2200和2800m处较高;土壤颗粒有机碳比例0~15cm土层在阴坡3000m和3200m、半阴坡2200m和2800m,以及15~35cm土层在阴坡3200m和3500m、阳坡3300m和3500m处较高(P<0.05)。土壤颗粒有机碳和颗粒组分碳含量随海拔升高变化不显著(P<0.9)。土壤颗粒有机碳含量0~15cm土层在阴坡3000m3500m、15~35cm土层在阴坡3000m3500m及阳坡3300m处较高;土壤颗粒组分碳含量0~15cm土层在阴坡3000m3400m和阳坡3300m,以及15~35cm土层在阴坡3200m和3400m及阳坡3300m处较高。土壤颗粒组分比例0~15cm土层在森林和灌丛草甸中较高;15~35cm土层在森林、灌丛草甸和干旱草原中较高(P<0.05)。土壤颗粒有机碳比例0~15cm土层在荒漠草原和干旱草原,以及15~30cm土层在森林和灌丛草甸中较高(P<0.05)。土壤颗粒组分碳含量0~15cm和15~35cm土层在森林和灌丛草甸中较高(P<0.05)。土壤颗粒有机碳含量0~15cm和15~35cm土层在森林中最高(P<0.05)。土壤颗粒组分碳含量和颗粒有机碳含量与土壤有机碳含量有显著的正相关性(P<0.001),土壤颗粒有机碳含量与颗粒组分碳含量也有显著的正相关性(P<0.001),土壤颗粒组分比例与有机碳含量相关性不显著(P=0.15),土壤颗粒有机碳含量与颗粒组分比例有显著正相关性(P<0.005)。结果说明祁连山中部北坡土壤有机碳稳定性受植被和海拔共同影响,荒漠草原和干旱草原表层土壤有机碳稳定性较低,森林和灌丛草甸土壤中非保护性碳含量较高。
引用
收藏
页码:2358 / 2365
页数:8
相关论文
共 21 条
[11]  
Increased Quantity and Quality of Coarse Soil Organic Matter Fraction at Elevated CO 2 in a Grazed Grassland are a Consequence of Enhanced Root Growth Rate and Turnover[J] . V. Allard,P.C.D. Newton,M. Lieffering,J-F. Soussana,R.A. Carran,C. Matthew.Plant and Soil . 2005 (1)
[12]  
Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J] . J. Six,R. T. Conant,E. A. Paul,K. Paustian.Plant and Soil . 2002 (2)
[13]  
Soil organic matter assessment in natural regrowth, Pueraria phaseoloides and Mucuna pruriens fallow[J] . L.-S. Koutika,S. Hauser,J. Henrot.Soil Biology and Biochemistry . 2001 (7)
[14]  
Role of the soil matrix and minerals in protecting natural organic materials against biological attack[J] . J.A Baldock,J.O Skjemstad.Organic Geochemistry . 2000 (7)
[15]   The vertical distribution of soil organic carbon and its relation to climate and vegetation [J].
Jobbágy, EG ;
Jackson, RB .
ECOLOGICAL APPLICATIONS, 2000, 10 (02) :423-436
[16]   Belowground consequences of vegetation change and their treatment in models [J].
Jackson, RB ;
Schenk, HJ ;
Jobbágy, EG ;
Canadell, J ;
Colello, GD ;
Dickinson, RE ;
Field, CB ;
Friedlingstein, P ;
Heimann, M ;
Hibbard, K ;
Kicklighter, DW ;
Kleidon, A ;
Neilson, RP ;
Parton, WJ ;
Sala, OE ;
Sykes, MT .
ECOLOGICAL APPLICATIONS, 2000, 10 (02) :470-483
[17]   Evaluation of methods for measuring microbial biomass C and N and relationships between microbial biomass and soil organic matter particle size classes in West-African soils [J].
Vanlauwe, B ;
Nwoke, OC ;
Sanginga, N ;
Merckx, R .
SOIL BIOLOGY & BIOCHEMISTRY, 1999, 31 (08) :1071-1082
[18]  
Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils. Camberdella C A, Elliott E T. Soil Science Society of America Journal . 1994
[19]  
Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains[J] . C.T. Garten,W.M. Post,P.J. Hanson,L.W. Cooper.Biogeochemistry . 1999 (2)
[20]  
青藏高原近代气候变化及其对环境的影响. 汤懋苍,程国栋. 广东科学技术出版社 . 1998