网络学习行为与成绩的预测及学习干预模型的设计

被引:59
作者
王改花
傅钢善
机构
[1] 陕西师范大学教育学院
基金
中央高校基本科研业务费专项资金资助;
关键词
决策树; 数据挖掘; 网络学习; 学习行为; 学习成绩; 学习干预; 适应性学习; 学业预警; 教学决策;
D O I
10.13541/j.cnki.chinade.20181214.007
中图分类号
G434 [计算机化教学]; G642 [教学理论、教学法];
学科分类号
040102 ;
摘要
网络学习已成为互联网+时代教育发展的重要组成,如何对网络学习者的学习行为与成绩进行预测,依据预测结果实施学业预警,并为教学决策提供依据,是网络教育需要解决的问题之一,也是教育大数据研究的重要问题。本研究采用数据挖掘技术中的决策树方法对网络学习者的学习行为与成绩进行了预测,构建了适应性学习系统学习干预模型,研究发现总成绩不及格的最高概率是男生、学习时间跨度表现较差的最高概率是硕士生、学习总时长表现较差的最高概率是男生、平均每次在线学习停留时长表现较差的最高概率是男理科生、讨论交流表现较差的最高概率是艺术生、学习笔记表现较差的最高概率是女艺术生、接受反馈数量较高的最高概率是男生。
引用
收藏
页码:39 / 48
页数:10
相关论文
共 25 条
[11]  
Evaluating the effectiveness of educational data mining techniques for early prediction of students' academic failure in introductory programming courses.[J].Evandro B. Costa;Baldoino Fonseca;Marcelo Almeida Santana;Fabrísia Ferreira de Araújo;Joilson Rego.Computers in Human Behavior.2017,
[12]   Understanding MOOC students: motivations and behaviours indicative of MOOC completion [J].
Pursel, B. K. ;
Zhang, L. ;
Jablokow, K. W. ;
Choi, G. W. ;
Velegol, D. .
JOURNAL OF COMPUTER ASSISTED LEARNING, 2016, 32 (03) :202-217
[13]   The role of students' motivation and participation in predicting performance in a MOOC [J].
de Barba, P. G. ;
Kennedy, G. E. ;
Ainley, M. D. .
JOURNAL OF COMPUTER ASSISTED LEARNING, 2016, 32 (03) :218-231
[14]  
Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics; educational data mining and theory.[J].Wanli Xing;Rui Guo;Eva Petakovic;Sean Goggins.Computers in Human Behavior.2015,
[15]  
Predicting students' final performance from participation in on-line discussion forums.[J].Cristóbal Romero;Manuel-Ignacio López;Jose-María Luna;Sebastián Ventura.Computers & Education.2013,
[16]  
Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models.[J].Shaobo Huang;Ning Fang.Computers & Education.2013,
[17]   A combinational incremental ensemble of classifiers as a technique for predicting students' performance in distance education [J].
Kotsiantis, S. ;
Patriarcheas, K. ;
Xenos, M. .
KNOWLEDGE-BASED SYSTEMS, 2010, 23 (06) :529-535
[18]  
Mining LMS data to develop an “early warning system” for educators: A proof of concept.[J].Leah P. Macfadyen;Shane Dawson.Computers & Education.2009, 2
[19]  
Flow at Work: Evidence for an Upward Spiral of Personal and Organizational Resources*.[J].Marisa Salanova;Arnold B. Bakker;Susana Llorens.Journal of Happiness Studies.2006, 1
[20]  
在线学习与发展.[M].衷克定; 著.高等教育出版社.2010,