A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM

被引:30
作者
CAO Shu-gang1
机构
基金
中国国家自然科学基金;
关键词
working face; methane concentration; LS-SVM; forecasting; forewarning;
D O I
暂无
中图分类号
TD712 [矿井瓦斯];
学科分类号
081903 ;
摘要
To improve the precision and reliability in predicting methane hazard in working face of coal mine, we have proposed a forecasting and forewarning model for methane hazard based on the least square support vector (LS-SVM) multi-classifier and regression machine. For the forecasting model, the methane concentration can be considered as a nonlinear time series and the time series analysis method is adopted to predict the change in methane concentration using LS-SVM regression. For the forewarning model, which is based on the forecasting results, by the multi-classification method of LS-SVM, the methane hazard was identified to four grades: normal, attention, warning and danger. According to the forewarning results, corresponding measures are taken. The model was used to forecast and forewarn the K9 working face. The results obtained by LS-SVM regression show that the forecast- ing have a high precision and forewarning results based on a LS-SVM multi-classifier are credible. Therefore, it is an effective model building method for continuous prediction of methane concentration and hazard forewarning in working face.
引用
收藏
页码:172 / 176
页数:5
相关论文
共 9 条
[2]   改进的灰色马尔柯夫模型预测采煤工作面瓦斯涌出量 [J].
陶云奇 ;
许江 ;
李树春 .
煤炭学报, 2007, (04) :391-395
[3]   最小二乘支持向量机参数选择方法及其应用研究 [J].
郭辉 ;
刘贺平 ;
王玲 .
系统仿真学报, 2006, (07) :2033-2036+2051
[4]   上隅角瓦斯浓度动态预测模型的研究及应用 [J].
吕品 ;
马云歌 ;
周心权 .
煤炭学报, 2006, (04) :461-465
[5]   基于最小二乘支持向量机的煤层底板突水量预测 [J].
姜谙男 ;
梁冰 .
煤炭学报, 2005, (05) :71-75
[6]   航空影像分割的最小二乘支持向量机方法 [J].
徐芳 ;
梅文胜 ;
张志华 ;
不详 .
武汉大学学报(信息科学版) , 2005, (08) :694-698
[7]   支持向量机及其应用研究综述 [J].
祁亨年 .
计算机工程, 2004, (10) :6-9
[8]   支持向量机在多类分类问题中的推广 [J].
刘志刚 ;
李德仁 ;
秦前清 ;
史文中 .
计算机工程与应用, 2004, (07) :10-13+65
[9]   Least squares support vector machine classifiers [J].
Suykens, JAK ;
Vandewalle, J .
NEURAL PROCESSING LETTERS, 1999, 9 (03) :293-300