共 12 条
基于双卷积链Fast R-CNN的番茄关键器官识别方法
被引:19
作者:
周云成
许童羽
邓寒冰
苗腾
机构:
[1] 沈阳农业大学信息与电气工程学院
来源:
关键词:
卷积神经网络;
番茄;
目标识别;
双卷积链;
激活单元;
深度学习;
D O I:
暂无
中图分类号:
TP391.41 [];
学科分类号:
080203 ;
摘要:
为提高番茄器官目标识别的准确率,提出一种基于RGB和灰度图像输入的双卷积链Fast R-CNN番茄器官识别网络。该方法通过番茄器官图像数据集训练基于VGGNet基本结构的特征提取网络,并用其参数初始化Fast R-CNN,通过再训练,用以识别植株图像中的番茄花、果、茎器官。首先分析了网络深度和宽度、图像输入类型、激活单元对特征提取及网络分类性能的影响。详细阐述了基于Fast R-CNN的番茄器官识别网络的设计及训练方法,基于试验观察,提出了基于双卷积链的Fast R-CNN,融合自动提取的RGB和灰度图像特征,由全连接层对Selective Search算法生成的候选区域进行分类识别。结果表明:针对番茄器官图像数据集,5个卷积层的网络即可具有较高的特征提取和分类性能,增加或降低卷积层数都会使网络性能下降;与ReLU激活单元相比,PReLU和ELU能够显著提高番茄特征提取网络的性能,而提高效果和具体的网络结构有关;基于Fast R-CNN的识别方法能够对番茄的花、果、茎器官进行识别,且能够识别不同成熟度的果和不同形态的花;单卷积链Fast R-CNN网络对花、果、茎的识别平均精度(AP)最高分别为64.79%、66.76%和42.58%,双卷积链Fast R-CNN识别网络对三种器官的识别AP最高分别为70.33%、63.99%和44.95%,相较于单链网络,双卷积链Fast R-CNN的mAP提高2.56%,说明该方法对提高番茄器官识别性能是有效的。
引用
收藏
页码:65 / 74
页数:10
相关论文