基于差分进化算法的支持向量机参数选择

被引:18
作者
陈涛
雍龙泉
邓方安
杨晓
机构
[1] 陕西理工学院数学系
关键词
支持向量机; 差分进化算法; 参数选择;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
支持向量机参数是影响其性能的重要因素,为了进一步提高支持向量机分类精度和泛化能力,提出了基于差分进化算法的SVM参数选择。以样本误判率最小为优化准则,利用差分进化算法对SVM参数进行优化选择。实验结果表明,利用差分进化算法选择SVM参数,加快了参数搜索的速度,提高了SVM分类精度,该方法具有良好的鲁棒性和较强的全局寻优能力。
引用
收藏
页码:24 / 26
页数:3
相关论文
共 6 条
[1]   基于混合差分进化算法的混沌系统参数估计 [J].
王钧炎 ;
黄德先 .
物理学报, 2008, (05) :2755-2760
[3]   基于粒子群优化算法的支持向量机参数选择及其应用 [J].
邵信光 ;
杨慧中 ;
陈刚 .
控制理论与应用, 2006, (05) :740-743+748
[4]   自适应二次变异差分进化算法 [J].
吴亮红 ;
王耀南 ;
袁小芳 ;
周少武 .
控制与决策 , 2006, (08) :898-902
[5]   基于网格搜索的支持向量机核函数参数的确定 [J].
王兴玲 ;
李占斌 .
中国海洋大学学报(自然科学版), 2005, (05) :859-862
[6]   Choosing Multiple Parameters for Support Vector Machines [J].
Olivier Chapelle ;
Vladimir Vapnik ;
Olivier Bousquet ;
Sayan Mukherjee .
Machine Learning, 2002, 46 :131-159