为探索基于常规监测数据的神经网络预警模型在农产品传统风险管理中的应用,以2011—2012年我国5省市的蔬菜中农药残留监测数据为样本,采取神经网络方法建立风险预警模型。首先,以产品种类、监测环节、监测时间和蔬菜产地为参考采用专家打分法将样本进行安全性评级,然后将经过筛选和预处理的45种农药监测数据,作为BP神经网络输入层,并根据不安全蔬菜的风险程度,以非常安全(A)、比较安全(B)、基本安全(C)、较不安全(D)和不安全(E)5个等级作为输出层,农药残留数据经过处理整合后得到16个样本,通过对其中14个样本进行拟合训练,得到预警模型及2个验证样本的评分结果分别为2.343 0和3.171 5,与实际评分结果隶属同一安全等级。证明基于客观监测数据的神经网络预警模型对于蔬菜中农药残留的预警是有效的。