一类带有接种的流行病模型的全局稳定性

被引:20
作者
李建全
马知恩
机构
[1] 西安交通大学应用数学系
关键词
流行病模型; 接种; 平衡点; 稳定性;
D O I
暂无
中图分类号
O175.1 [常微分方程];
学科分类号
摘要
该文讨论了一类带有接种的流行病模型.在该模型中假设恢复后的个体与被接种的个体均具有确定的免疫期,它是一个时滞微分系统.通过分析,得到了地方病平衡点存在的阈值, 以及无病平衡点和地方病平衡点局部渐近稳定和全局渐近稳定的充分条件.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 12 条
[1]   一类含时滞SIS流行病模型的全局稳定性 [J].
原三领 ;
马知恩 ;
韩茂安 .
数学物理学报, 2005, (03) :349-356
[2]  
GLOBAL ANALYSIS OF SOME EPIDEMIC MODELS WITH GENERAL CONTACT RATE AND CONSTANT IMMIGRATION[J]. 李健全,张娟,马知恩.Applied Mathematics and Mechanics(English Edition). 2004(04)
[3]   一类有被动免疫的流行病模型研究 [J].
娄洁 ;
马知恩 .
数学物理学报, 2003, (03) :357-368
[4]   Global dynamics of an SEIR epidemic model with saturating contact rate [J].
Zhang, J ;
Ma, Z .
MATHEMATICAL BIOSCIENCES, 2003, 185 (01) :15-32
[5]   Global dynamics of an epidemic model with time delay [J].
Wang, WD ;
Ma, Z .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2002, 3 (03) :365-373
[6]   Dynamical behavior for a stage-structured SIR infectious disease model [J].
Xiao, YN ;
Chen, LS ;
van den Bosch, F .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2002, 3 (02) :175-190
[7]  
Qualitative analyses of SIS epidemic model with vaccination and varying total population size[J] . Jianquan Li,Zhien Ma.Mathematical and Computer Modelling . 2002 (11)
[8]   Global behavior of an SEIRS epidemic model with time delays [J].
Wang, WD .
APPLIED MATHEMATICS LETTERS, 2002, 15 (04) :423-428
[9]  
Modeling and analysis of a predator–prey model with disease in the prey[J] . Yanni Xiao,Lansun Chen.Mathematical Biosciences . 2001 (1)
[10]   A simple vaccination model with multiple endemic states [J].
Kribs-Zaleta, CM ;
Velasco-Hernández, JX .
MATHEMATICAL BIOSCIENCES, 2000, 164 (02) :183-201