Global dynamics of an epidemic model with time delay

被引:12
作者
Wang, WD [1 ]
Ma, Z
机构
[1] Xi An Jiao Tong Univ, Dept Math, Xian 710049, Peoples R China
[2] SW Normal Univ, Dept Math, Chongqing 400715, Peoples R China
关键词
persistence; global stability; endemic equilibrium; delay;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:365 / 373
页数:9
相关论文
共 10 条
[1]  
BERETTA E, 1995, J MATH BIOL, V33, P250, DOI 10.1007/BF00169563
[2]   Convergence results in SIR epidemic models with varying population sizes [J].
Beretta, E ;
Takeuchi, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (12) :1909-1921
[3]   ANALYSIS OF A DISEASE TRANSMISSION MODEL IN A POPULATION WITH VARYING SIZE [J].
BUSENBERG, S ;
VANDENDRIESSCHE, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1990, 28 (03) :257-270
[4]   Analysis of an SEIRS epidemic model with two delays [J].
Cooke, KL ;
vandenDriessche, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (02) :240-260
[5]   4 SEI ENDEMIC MODELS WITH PERIODICITY AND SEPARATRICES [J].
GAO, LQ ;
MENALORCA, J ;
HETHCOTE, HW .
MATHEMATICAL BIOSCIENCES, 1995, 128 (1-2) :157-184
[6]  
GAO LQ, 1992, J MATH BIOL, V30, P717, DOI 10.1007/BF00173265
[7]   An SIS epidemic model with variable population size and a delay [J].
Hethcote, HW ;
vandenDriessche, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1995, 34 (02) :177-194
[8]   Two SIS epidemiologic models with delays [J].
Hethcote, HW ;
van den Driessche, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 2000, 40 (01) :3-26
[9]  
MENALORCA J, 1992, J MATH BIOL, V30, P693
[10]   POPULATION-SIZE DEPENDENT INCIDENCE IN MODELS FOR DISEASES WITHOUT IMMUNITY [J].
ZHOU, JS ;
HETHCOTE, HW .
JOURNAL OF MATHEMATICAL BIOLOGY, 1994, 32 (08) :809-834