Active targeting schemes for nanoparticle systems in cancer therapeutics

被引:1358
作者
Byrne, James D. [1 ]
Betancourt, Tania [2 ]
Brannon-Peppas, Lisa [1 ,3 ]
机构
[1] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
[3] Appian Labs, Austin, TX USA
关键词
Active targeting; Passive targeting; Cancer therapy; Angiogenesis; Nanoparticles; Targeting moiety;
D O I
10.1016/j.addr.2008.08.005
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The objective of this review is to outline current major cancer targets for nanoparticle systems and give insight into the direction of the field. The major targeting strategies that have been used for the delivery of therapeutic or imaging agents to cancer have been broken into three sections. These sections are angiogenesis-associated targeting, targeting to uncontrolled cell proliferation markers, and tumor cell targeting. The targeting schemes explored for many of the reported nanoparticle systems suggest the great potential of targeted delivery to revolutionize cancer treatment. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1615 / 1626
页数:12
相关论文
共 143 条
  • [91] MONRET X, 2006, NEOPLASIA, V8, P214
  • [92] Synergistic antitumor activity of the novel SN-38-incorporating polymeric micelles, NK012, combined with 5-fluorouracil in a mouse model of colorectal cancer, as compared with that of irinotecan plus 5-fluorouracil
    Nakajima, Takako Eguchi
    Yasunaga, Masahiro
    Kano, Yasuhiko
    Koizumi, Fumiaki
    Kato, Ken
    Hamaguchi, Tetsuya
    Yamada, Yasuhide
    Shirao, Kuniaki
    Shimada, Yasuhiro
    Matsumura, Yasuhiro
    [J]. INTERNATIONAL JOURNAL OF CANCER, 2008, 122 (09) : 2148 - 2153
  • [93] cRGD-functionalized polymer micelles for targeted doxorubicin delivery
    Nasongkla, N
    Shuai, X
    Ai, H
    Weinberg, BD
    Pink, J
    Boothman, DA
    Gao, JM
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (46) : 6323 - 6327
  • [94] EGFR and cancer prognosis
    Nicholson, RI
    Gee, JMW
    Harper, ME
    [J]. EUROPEAN JOURNAL OF CANCER, 2001, 37 : S9 - S15
  • [95] A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth
    Niethammer, AG
    Xiang, R
    Becker, JC
    Wodrich, H
    Pertl, U
    Karsten, G
    Eliceiri, BP
    Reisfeld, RA
    [J]. NATURE MEDICINE, 2002, 8 (12) : 1369 - 1375
  • [96] αvβ3 and αvβ5 integrin antagonists inhibit angiogenesis in vitro
    Riccardo E. Nisato
    Jean-Christophe Tille
    Alfred Jonczyk
    Simon L. Goodman
    Michael S. Pepper
    [J]. Angiogenesis, 2003, 6 (2) : 105 - 119
  • [97] Biodegradable nanoparticles for direct or two-step tumor immunotargeting
    Nobs, L
    Buchegger, F
    Gurny, R
    Allémann, E
    [J]. BIOCONJUGATE CHEMISTRY, 2006, 17 (01) : 139 - 145
  • [98] DIRECT EXPRESSION CLONING OF VASCULAR CELL-ADHESION MOLECULE-1, A CYTOKINE-INDUCED ENDOTHELIAL PROTEIN THAT BINDS TO LYMPHOCYTES
    OSBORN, L
    HESSION, C
    TIZARD, R
    VASSALLO, C
    LUHOWSKYJ, S
    CHIROSSO, G
    LOBB, R
    [J]. CELL, 1989, 59 (06) : 1203 - 1211
  • [99] PEGylated nanoparticles for biological and pharmaceutical applications
    Otsuka, H
    Nagasaki, Y
    Kataoka, K
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2003, 55 (03) : 403 - 419
  • [100] Targeted delivery of paclitaxel using folate-decorated poly(lactide) - vitamin E TPGS nanoparticles
    Pan, Jie
    Feng, Si-Shen
    [J]. BIOMATERIALS, 2008, 29 (17) : 2663 - 2672