Regulation of singlet oxygen generation using single-walled carbon nanotubes

被引:225
作者
Zhu, Zhi
Tang, Zhiwen
Phillips, Joseph A.
Yang, Ronghua
Wang, Hui [2 ]
Tan, Weihong [1 ]
机构
[1] Univ Florida, Shands Canc Ctr, Dept Chem & Physiol & Funct Genom, Ctr Res Bio Nano Interface, Gainesville, FL 32611 USA
[2] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
关键词
D O I
10.1021/ja802913f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have designed a novel photodynamic therapy (PDT) agent using protein binding aptamer, photosensitizer, and single-walled carbon nanotube (SWNT). The PDT is based on covalently linking a photosensitizer with an aptamer then wrapping onto the surface of SWNTs, such that the photosensitizer can only be activated by light upon target binding. We have chosen the human a-thrombin aptamer and covalently linked it with Chlorin e6 (Ce6), which is a second generation photosensitizer. Our results showed that SWNTs are great quenchers to singlet oxygen generation (SOG). In the presence of its target, the binding of target thrombin will disturb the DNA interaction with the SWNTs and cause the DNA aptamer to fall off the SWNT surface, resulting in the restoration of SOG. This study validated the potential of our design as a novel PDT agent with regulation by target molecules, enhanced specificity, and efficacy of therapeutic function, which directs the development of photodynamic therapy to be safer and more selective.
引用
收藏
页码:10856 / +
页数:4
相关论文
共 22 条
[1]   An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform [J].
Bagalkot, Vaishali ;
Farokhzad, Omid C. ;
Langer, Robert ;
Jon, Sangyong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (48) :8149-8152
[2]   Programmable ligand-controlled riboregulators of eukaryotic gene expression [J].
Bayer, TS ;
Smolke, CD .
NATURE BIOTECHNOLOGY, 2005, 23 (03) :337-343
[3]   Photodynamic therapy: update 2006 - Part 1: Photochemistry and photobiology [J].
Calzavara-Pinton, P. G. ;
Venturini, M. ;
Sala, R. .
JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, 2007, 21 (03) :293-302
[4]   Photodynamic therapy and anti-tumour immunity [J].
Castano, Ana P. ;
Mroz, Pawel ;
Hamblin, Michael R. .
NATURE REVIEWS CANCER, 2006, 6 (07) :535-545
[5]   Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].
Chen, RJ ;
Bangsaruntip, S ;
Drouvalakis, KA ;
Kam, NWS ;
Shim, M ;
Li, YM ;
Kim, W ;
Utz, PJ ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :4984-4989
[6]   Selective antitumor effect of novel protease-mediated photodynamic agent [J].
Choi, Yongdoo ;
Weissleder, Ralph ;
Tung, Ching-Hsuan .
CANCER RESEARCH, 2006, 66 (14) :7225-7229
[7]   DNA-programmed control of photosensitized singlet oxygen production [J].
Cló, E ;
Snyder, JW ;
Voigt, NV ;
Ogilby, PR ;
Gothelf, KV .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (13) :4200-4201
[8]   Photodynamic therapy for cancer [J].
Dolmans, DEJGJ ;
Fukumura, D ;
Jain, RK .
NATURE REVIEWS CANCER, 2003, 3 (05) :380-387
[9]   INVITRO SELECTION OF RNA MOLECULES THAT BIND SPECIFIC LIGANDS [J].
ELLINGTON, AD ;
SZOSTAK, JW .
NATURE, 1990, 346 (6287) :818-822
[10]   Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway [J].
Kam, NWS ;
Liu, ZA ;
Dai, HJ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (04) :577-581