Interactions of the nicotinic acetylcholine receptor transmembrane segments with the lipid bilayer in native receptor-rich membranes

被引:40
作者
Dreger, M
Krauss, M
Herrmann, A
Hucho, F
机构
[1] FREE UNIV BERLIN, INST BIOCHEM, D-14195 BERLIN, GERMANY
[2] HUMBOLDT UNIV BERLIN, INST BIOL BIOPHYS, D-10115 BERLIN, GERMANY
关键词
D O I
10.1021/bi960666z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proper ion channel function of the nicotinic acetylcholine receptor (nAChR) requires the interaction of the protein with distinct lipid species present in the receptor's membrane microenvironment. Two classes of lipid binding sites present at the protein-membrane interface have been postulated: annular binding sites primarily occupied by phospholipids and non-annular binding sites mainly occupied by cholesterol [Jones & McNamee (1988) Biochemistry 27, 2364-2374]. We investigated the binding of these lipids to the nAChR and potential dynamics of these interactions during events associated with signal transduction by electron spin resonance spectroscopy (ESR) using spin-labeled analogues of phospholipids, androstane, and stearic acid. Protein-lipid interactions were characterized in receptor-rich membranes prepared from Torpedo californica electric tissue preserving the native lipid environment of the nAChR. We found a strong preference of the receptor for the phosphatidylserine (PS) analogue as compared to the other probes. Up to 57% of PS were perturbed by the membrane protein, while the fraction of motionally restricted lipid for the other analogues was on the order of 30%. After removal of the extramembrane portions of the membrane-bound receptor, we observed a loss of binding sites for the spin-labeled analogue of androstane and for stearic acid, but not for phospholipids and sphingomyelin analogues. Our results demonstrate the existence of topologically distinct lipid binding sites for different lipid species. In the case of cholesterol, extramembrane portions of the receptor are involved, whereas the transmembrane segments meet the requirements for the binding of phospholipids. Tyrosine phosphorylation of the nAChR did not affect protein-lipid interactions in samples of intact nAChR. Similarly, no significant changes were observed in the presence of carbamoylcholine at concentrations that caused rapid and quantitative desensitization of the nAChR.
引用
收藏
页码:839 / 847
页数:9
相关论文
共 52 条
[21]   PROTEIN TYROSINE KINASE-ACTIVITY AND ITS ENDOGENOUS SUBSTRATES IN RAT-BRAIN - A SUBCELLULAR AND REGIONAL SURVEY [J].
HIRANO, AA ;
GREENGARD, P ;
HUGANIR, RL .
JOURNAL OF NEUROCHEMISTRY, 1988, 50 (05) :1447-1455
[22]   FUNCTIONAL MODULATION OF THE NICOTINIC ACETYLCHOLINE-RECEPTOR BY TYROSINE PHOSPHORYLATION [J].
HOPFIELD, JF ;
TANK, DW ;
GREENGARD, P ;
HUGANIR, RL .
NATURE, 1988, 336 (6200) :677-680
[23]   INTEGRATION OF A K+ CHANNEL-ASSOCIATED PEPTIDE IN A LIPID BILAYER - CONFORMATION, LIPID-PROTEIN INTERACTIONS, AND ROTATIONAL DIFFUSION [J].
HORVATH, LI ;
HEIMBURG, T ;
KOVACHEV, P ;
FINDLAY, JBC ;
HIDEG, K ;
MARSH, D .
BIOCHEMISTRY, 1995, 34 (12) :3893-3898
[24]   PHOSPHORYLATION OF THE NICOTINIC ACETYLCHOLINE-RECEPTOR BY AN ENDOGENOUS TYROSINE-SPECIFIC PROTEIN-KINASE [J].
HUGANIR, RL ;
MILES, K ;
GREENGARD, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (22) :6968-6972
[25]   A QUANTITATIVE DOT-IMMUNOBINDING ASSAY FOR PROTEINS USING NITROCELLULOSE MEMBRANE FILTERS [J].
JAHN, R ;
SCHIEBLER, W ;
GREENGARD, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (06) :1684-1687
[26]   ANNULAR AND NONANNULAR BINDING-SITES FOR CHOLESTEROL ASSOCIATED WITH THE NICOTINIC ACETYLCHOLINE-RECEPTOR [J].
JONES, OT ;
MCNAMEE, MG .
BIOCHEMISTRY, 1988, 27 (07) :2364-2374
[27]   Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins [J].
Karlin, A ;
Akabas, MH .
NEURON, 1995, 15 (06) :1231-1244
[28]   IN-VITRO EXCITATION OF PURIFIED MEMBRANE FRAGMENTS BY CHOLINERGIC AGONISTS .1. PHARMALOGICAL PROPERTIES OF EXCITABLE MEMBRANE FRAGMENTS [J].
KASAI, M ;
CHANGEUX, JP .
JOURNAL OF MEMBRANE BIOLOGY, 1971, 6 (01) :1-&
[29]  
KRIKORIAN JG, 1992, J BIOL CHEM, V267, P9118
[30]   CLEAVAGE OF STRUCTURAL PROTEINS DURING ASSEMBLY OF HEAD OF BACTERIOPHAGE-T4 [J].
LAEMMLI, UK .
NATURE, 1970, 227 (5259) :680-+