Polarization spectroscopy of single fluorescent molecules

被引:215
作者
Ha, T
Laurence, TA
Chemla, DS
Weiss, S
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA
关键词
D O I
10.1021/jp990948j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polarization spectroscopy of single fluorescent molecules is used to probe their rotational dynamics. When a molecule is immobilized on a dry surface, its in-plane dipole orientation is precisely determined by utilizing its transition dipole moment. An angular offset between the absorption and the emission dipoles was detected from a single fluorophore revealing its binding geometry to the surface. In an aqueous environment, DNA-tethered fluorophores display dynamics that are well-described by a hindered rotational diffusion model. A detailed description of the model is given, including calculations to estimate depolarization effects resulting from the high numerical aperture objective used to collect fluorescence photons. Protein-conjugated fluorophores display very distinct dynamics with continuous evolution of the rotational profile, possibly reflecting fluctuations in the polypeptide chain, When protein-conjugated fluorophores are allowed to freely diffuse in solution, it is possible to determine the fluorescence polarization anisotropy of each molecule that traverses the laser beam. The anisotropy values could, in principle, be used to identify conformational states of single molecules without the potential artifacts associated with surface immobilization.
引用
收藏
页码:6839 / 6850
页数:12
相关论文
共 51 条
[1]   SINGLE-MOLECULE DETECTION AND PHOTOCHEMISTRY ON A SURFACE USING NEAR-FIELD OPTICAL-EXCITATION [J].
AMBROSE, WP ;
GOODWIN, PM ;
MARTIN, JC ;
KELLER, RA .
PHYSICAL REVIEW LETTERS, 1994, 72 (01) :160-163
[2]   ALTERATIONS OF SINGLE-MOLECULE FLUORESCENCE LIFETIMES IN NEAR-FIELD OPTICAL MICROSCOPY [J].
AMBROSE, WP ;
GOODWIN, PM ;
MARTIN, JC ;
KELLER, RA .
SCIENCE, 1994, 265 (5170) :364-367
[3]  
[Anonymous], 1980, BIOPHYS CHEM
[4]   FLUORESCENCE CORRELATION SPECTROSCOPY AS A PROBE OF MOLECULAR-DYNAMICS [J].
ARAGON, SR ;
PECORA, R .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (04) :1791-1803
[5]   CARBOCYANINE DYE ORIENTATION IN RED-CELL MEMBRANE STUDIED BY MICROSCOPIC FLUORESCENCE POLARIZATION [J].
AXELROD, D .
BIOPHYSICAL JOURNAL, 1979, 26 (03) :557-573
[6]   Theory of diffraction by small holes [J].
Bethe, HA .
PHYSICAL REVIEW, 1944, 66 (7/8) :163-182
[7]   SINGLE MOLECULES OBSERVED BY NEAR-FIELD SCANNING OPTICAL MICROSCOPY [J].
BETZIG, E ;
CHICHESTER, RJ .
SCIENCE, 1993, 262 (5138) :1422-1425
[8]   Fluorescence and photobleaching dynamics of single light-harvesting complexes [J].
Bopp, MA ;
Jia, YW ;
Li, LQ ;
Cogdell, RJ ;
Hochstrasser, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (20) :10630-10635
[9]  
DAHAN M, IN PRESS CHEM PHYS
[10]   Single-pair fluorescence resonance energy transfer on freely diffusing molecules: Observation of Forster distance dependence and subpopulations [J].
Deniz, AA ;
Dahan, M ;
Grunwell, JR ;
Ha, TJ ;
Faulhaber, AE ;
Chemla, DS ;
Weiss, S ;
Schultz, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3670-3675